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Abstract: Timely and accurate information on crop yield and production is critical to many 

applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse 

spatial resolution satellite imagery has always been a source of valuable information for yield 

forecasting and assessment at national and regional scales. With availability of free images acquired 

by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal 

resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher 

spatial resolution (10–30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A 

for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we 

adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking 

into account a priori knowledge on crop calendar. For the latter, we use a generalized winter 

wheat yield forecasting model that is based on estimation of the peak Normalized Difference 

Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be 

applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves 

both winter crop mapping and winter wheat yield assessment. In particular, the error of winter 

wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite. 
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1. Introduction 

Timely and accurate information on crop yields and production at global, national, and 

regional scales is extremely important for many agriculture applications [1]. At national/regional 

scale, it can be an input to local authorities to make decisions on food security issues or deciding on 

subsidies in case of extreme weather conditions such as droughts. At field scale, spatial variability 

of yields can help to obtain objective information, for example, for farmers to improve management 

practices and identify yield gaps [2], or for insurance companies to feed this information into 

insurance models [3,4]. 

Owing to its coverage, temporal and spatial resolution, remote sensing images from space 

has always been a powerful tool to develop empirical models for predicting and assessing yields 

at regional and national scales [5–11], or assimilating biophysical parameters into crop growth 

models [12–14]. In particular, coarse resolution sensors, e.g. Moderate Resolution Imaging 

Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR),  

SPOT-VEGETATION, thanks to its daily coverage and availability of historical datasets dating 

back to 1980s–1990s, have extensively been used for building empirical models for crop yield 

forecasting and assessment. These models connect satellite-derived features, for example 

vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Vegetation Health Index (VHI) and/or biophysical parameters such as 

Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR), with reference 

yield data. For example, Johnson (2016) [5] analyzed efficiency of multiple MODIS land products 

including NDVI, EVI, LAI, FPAR, and Gross Primary Production (GPP) to assess crop yield at 

county level in US for ten major agriculture commodities. He found positive correlations of 

vegetation products against yield for all crops, except rice, and that finer spatial resolution 

improved the correlations. López-Lozano et al. (2015) [6] investigated the use of the Fraction 

of Absorbed Photosynthetically Active Radiation (fAPAR) derived from SPOT-VEGETATION 

at 1 km spatial resolution to assess crop yields (wheat, barley and maize) at province level in 

Europe. They found high correlations (R2 > 0.6) in water-stressed regions; however, lower 

correlations (R2 < 0.5) were observed for regions with high yields. Salazar et al. (2007) applied 

AVHRR-derived VHI to estimate winter wheat yield in Kansas, US, and found high correlations 

with official statistics for 1982–2004. NDVI, as well as biophysical parameters LAI and fAPAR, 

also proved to be efficient in predicting winter wheat yields at different scales in Ukraine [15]. In order 

to overcome some limitations of empirical models in terms of robustness, Becker-Reshef et al. [10] 

developed a generalized winter wheat yield forecasting model that was calibrated for one region 

(Kansas, US) and successfully applied for another one (Ukraine) to provide an error of less than 10% 
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that can be suitable for operational context. Adding meteorological data, in particular temperature, 

has usually had a positive effect on crop yield models reducing the error and improving 

timeliness [5–7]. Though these models are empirical and based on relative simple equations, they 

perform at the same level, or even better, than more comprehensive crop models that are based on 

crop growth simulations [8,16]. The reasons for that are: complexity of accounting multiple factors 

influencing the yield, lack of high-quality data required to calibrate and run such models, and 

difficulties of upscaling “point” estimates to higher spatial scale [17]. 

The use of Landsat and Landsat-like 30 m data for crop yield forecasting and assessment has 

been limited due to its infrequent revisit rate of only 16 days. There have been works fusing 

Landsat with higher temporal frequency, but spatially coarser, MODIS sensor [18,19], or 

combining Landsat with biophysical models [20,21]. For example, Lobell et al. (2015) proposed a 

scalable satellite-based crop yield mapper (SCYM) that is based on training a statistical model from 

crop simulations and applying the statistical model to Landsat-5/7 images and meteorological 

data [21]. They achieved on average R2 values of 0.35 and 0.32 for corn and soybeans, respectively, 

for the large areas in the Midwestern United States. However, these approaches showed varying 

results in terms of errors and still have limitations constrained by lower frequency of moderate 

resolution images. With the combined use of Landsat-8 and Sentinel-2 remote sensing satellites that 

will enable acquisition of an image every 3–5 days globally, it becomes possible to implement 

approaches similar to those used for MODIS/AVHRR to develop next generation agriculture 

products at higher spatial resolution (30 m). 

This paper presents one of the first studies to combine Landsat-8 and Sentinel-2A imagery 

for crop yield mapping by downscaling a generalized empirical model developed for MODIS 

data [7,10]. The model is based on capturing the peak NDVI to correlate with the yield, and 

growing degree days (GDD) to improve the timeliness of the model. Therefore, the main 

objectives of the study are: (i) to assess performance of downscaling the generalized  

NDVI–based empirical model for winter wheat yield forecasting from coarse spatial resolution to 

moderate one at 30 m; (ii) to explore the combined use of images acquired by Landsat-8 and 

Sentinel-2A remote sensing satellites for winter crop mapping and winter wheat yield assessment at 

regional level. 

2. Study Area & Materials 

2.1. Study Area and Reference Data 

The study was performed for Kirohohradska oblast in Ukraine for 2016 (Figure 1). Ukraine is 

a top 10 wheat producer in the world. An oblast is a high-level administrative division of the 

country (there are 24 oblasts in Ukraine and Autonomous Republic of Crimea), and each oblast is 

further divided into districts. Kirovhradska oblast is located in the central part of Ukraine and 

composed of 21 districts with geographical area ranging from 65 to 165 thousand ha and cropland 
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area ranging from 27 to 112 thousand ha. The reason for selecting this region is that it is a top 10 wheat 

producer in Ukraine and because of availability of reference crop yield and harvested area data at 

district scale for 2016. Winter wheat is one of the major crops in Kirovhradska oblast accounting 

for 20% of production of all crops in the region. Winter wheat is mainly rain-fed in the region and 

usually planted in September-October. After dormancy during the winter, it re-emerges early spring 

reaching maturity by the end of June. Harvest of winter crops is typically undertaken in July. 

Reference data on crop yield and harvested area at district level were collected from 

the Department of Agro-Industry Development of Kirovohrad State Administration 

(http://apk.kr-admin.gov.ua). The data were made available online as the harvest progressed 

and were based on farm surveys of all agricultural enterprises (that account of more than 90% 

of all winter crops production in the region) and samples of household farms the same way as 

official statistics is collected [22]. The number of samples for surveying small household farms 

is selected in such a way to target a coefficient of variation of 10%. The final estimates for 

winter crop yields and areas were available at the end of November and were used as reference 

in this study. Uncertainty of reference data should not exceed 10% [23]. 

 

Figure 1. A map of Ukraine with the study area (Kirovohradska oblast) highlighted in gray. 

2.2. Landsat-8/OLI and Sentinel-2A /MSI Datasets 

Remote sensing images acquired by the Operational Land Imager (OLI) instrument aboard 

Landsat-8 satellite and by the Multi-Spectral Instrument (MSI) aboard Sentinel-2A satellite were 

used in the study. Landsat-8/OLI captures images of the Earth’s surface in 9 spectral bands at 30 m 
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spatial resolution (15 m for panchromatic band) [24] while Sentinel-2A/MSI captures images of the 

Earth’s surface in 13 spectral bands at 10 m, 20 m and 60 m spatial resolution [25]. The main bands 

that were used in the study are bands 4 (Red) and 5 (NIR) from Landsat-8, and bands 4 (Red) and 

8A (NIR) from Sentinel-2A. Band 8A from Sentinel-2A was selected instead of band 8 since 

spectral response function for band 8A is similar to the Landsat-8’s band 5 (Figure 2). 

 

Figure 2. Relative spectral response functions of Landsat-8/OLI and Sentinel-2A/MSI for red 

and near-infrared spectral bands. The functions for Landsat-8/OLI and Sentinel-2A/MSI were 

derived from USGS (https://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-

operational-land-imager-in-band-band-average-relative-spectral-response) and ESA 

(https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-

/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses), respectively. 

Overall, 51 Landsat-8 and 87 Sentinel-2A scenes were acquired over the study area from 

March 1, 2016 to July, 31, 2016. Landsat-8 images were downloaded from the USGS’s Earth 

Explorer (Pre-Collection Level 1) and Sentinel-2A images were downloaded from the Copernicus 

Open Access Hub (SciHub) with baseline processing version ranging from 02.01 to 02.04. Landsat-8 

scenes covered the following coordinates (path/row) of the World-wide Reference System (WRS-2): 
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178/026, 179/026, 179/027, 180/026, 180/027, and 181/026. The tile size of Landsat-8 is 

approximately 185 km × 180 km. Sentinel-2A scenes covered the following tiles: 35UQQ, 35UQP, 

36UUV, 36UUU, 36UVV, 36UVU, 36UWV, and 36UWU. The size of the Sentinel-2A tile is 

approximately 110 km × 110 km (Figure 3). Dates of Landsat-8 and Sentinel-2A acquisitions are 

given in Appendix A. 

 

Figure 3. Coverage of Landsat-8 scenes and Sentinel-2A tiles over the study area. 

The Landsat-8/OLI and Sentinel-2A/MSI scenes were atmospherically corrected for surface 

reflectance using the LaSRC algorithm [26] (Figure 4 and Figure 5) ensuring consistency between 

these datasets as well as with MODIS data used for building a generalized crop yield model [10,28]. 

Figure 4 shows an example of true and false color compositions of Landsat-8 and Sentinel-2A 

acquired on the same date. A quantitative analysis with performance metrics is presented in Figure 5. 

On the y-axis, the figure shows NDVI, NIR and red values from Landsat-8 images (used as a 

reference) with accuracy, precision and uncertainty (Eq. 2–4) being calculated between Sentinel-2A 

and Landsat-8 for each bin. 
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Figure 4. Examples of images acquired by Landsat-8/OLI and Sentinel-2A/MSI satellites on 

the same day (April 8, 2016) and atmospherically corrected using the LaSRC algorithm. True 

color images were composed of bands 4-3-2 for Landsat-8 and Sentinel-2A, and scaled from 0 

to 0.15. False color images were composed of bands 5-4-3 and 8A-4-3 for Landsat-8 and 

Sentinel-2A, respectively, and scaled from 0 to 0.3 for NIR, and 0 to 0.1 for red and green 

bands. Note that Sentinel-2A bands at 10 m and 20 m resolution were resampled to 30 m 

using aggregation to match spatial resolution of Landsat-8. 
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C 

Figure 5. The accuracy, precision and uncertainty (APU) values (see section 3.3) estimated 

when inter-comparing atmospherically corrected images acquired by Landsat-8/OLI and 

Sentinel-2A/MSI satellites on April 8, 2016. Comparison is performed for NDVI (A), NIR 

(band 5 and band 8a for Landsat-8 and Sentinel-2A, respectively; B) and red (band 4 for 

Landsat-8 and Sentinel-2A; C) spectral bands. The light blues bars show the number of 

points used in each bin of reflectance/NDVI from Landsat-8 (used as a reference). The APU 

values were computed for points in each bin and being shown in red (accuracy), green 

(precision) and blue (uncertainty). The pink represents the specified uncertainty based on 

theoretical error budget of the collection 5 MODIS surface reflectance. Inter-comparison was 

performed at 30 m resolution. 

Cloud and shadow screening for Landsat-8 and Sentinel-2A scenes was performed using the 

Fmask algorithm [27] and inversion residuals from aerosol optical thickness (AOT) estimation [26] 

(Figure 6). The pixels identified as those with high aerosol content were also masked out. Images 

from Sentinel-2A/MSI were further converted to 30 m to match spatial resolution of Landsat-8/OLI. 

Since atmospheric correction for Sentinel-2A was performed at 10 m spatial resolution for all 

spectral bands, conversion to 30 m was carried out by aggregation (averaging). 

It was found that Landsat-8/OLI and Sentinel-2A/MSI exhibit misregistration issues [29]; 

therefore, additional co-registration was performed to ensure spatial consistency between the 
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datasets [30]. Finally, NDVI was calculated for Landsat-8 scenes using band 5 (near-infra red-NIR) 

and band 4 (red), and for Sentinel-2A scenes using band 8A (NIR) and band 4 (red) using the 

following equation [31]: NDVI = (NIR-Red)/(NIR + Red). 

 

Figure 6. Example of cloud and shadow detection for Sentinel-2A images. 

2.3. Meteorological Datasets 

We used air temperature derived from the NASA’s Modern-Era Retrospective analysis for 

Research and Applications (MERRA2) reanalysis data set [32] to compute growing degree days 

(GDD) for winter wheat. The data are provided on a regular grid that has 576 points in the 

longitudinal direction and 361 points in the latitudinal direction, corresponding to a resolution of 

0.625 × 0.5. We used the time-averaged, two-dimensional data collection (M2SDNXSLV), to 

extract daily averaged 2-meter air temperature (T2MMEAN). The data sets were extracted from the 

netCDF format, transformed to the geo-referenced raster, subset for study areas and linearly 

interpolated to the Landsat 30 m spatial resolution. 

3. Methodology 

Winter wheat yield mapping and assessment at regional scale consists of the two major steps: 

(i) winter crop mapping; (ii) yield assessment at 30 m spatial resolution. Figure 7 illustrates all 

processing steps along with the input datasets. These steps are described in detail in the following 

sub-sections. 
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Figure 7. Algorithm flowchart. 

3.1. Winter Crop Mapping 

For winter crop mapping, we adopted a previously developed approach for MODIS [33] that 

allows automatic mapping of winter crops using a priori knowledge on crop calendar and without 

using reference (ground truth) data. The method is based on per-pixel estimation of the peak NDVI 

(hereafter referred as the metric) during early spring (or early fall depending on the Earth 

hemisphere), when winter crops have developed biomass, while other crops (spring and summer) 

have no biomass in that time period. The calculated metric will have high NDVI values for winter 

crops and low NDVI values for other crops (Figure 8). Then, the metric is fitted using a Gaussian 

mixture model (GMM) [34] to automatically discriminate different crop types (winter versus 

others). The GMM is a linear combination of Gaussian distributions that can model any continuous 

distribution: 

ሻܠሺ݌ ൌ ∑ ,௞ߤ|ܠ௞ܰሺߨ ∑௞ሻ
௄
௞	ୀ	ଵ ,   (1) 

where each Gaussian density ܰሺߤ|ܠ௞, ∑௞ሻ is called a component of the mixture and has its own 

mean ߤ௞ and covariance ∑௞; parameters ߨ௞ are weight (mixing) coefficients with ∑ ௞ߨ
௄
௞	ୀ	ଵ ൌ 1. 

Parameters of the GMM model are estimated using an expectation-maximization (EM) 

algorithm that is run for all pixels identified as cropland. In our study, we used a cropland layer 

derived from the land cover map generated for Ukraine at 30 m spatial resolution [35]. The constraint 

to utilize cropland pixels only comes from potential confusion with grassland, hay, bulrush that might 

also have already developed biomass within the indicated time period. The component with the 

largest mean, i.e. NDVI value, in the obtained GMM model is considered to belong to the winter crop 

class (Figure 8). Finally, the derived GMM model is applied to all cropland pixels, and a posteriori 

probability (Eq. 1) of the pixel belonging to the winter crop class is estimated in the final resulting 

map. Pixels, with the probability larger than 0.5, are considered as winter crops. 
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Figure 8. Empirical distribution for the peak NDVI calculated from Landsat-8 and Sentinel-2A 

images during the March 1 to April 6 period, and fitted with the GMM model. The solid 

green line shows the fitted GMM distribution, while the dashed lines show the mixture model 

components. 

3.2. Winter Wheat Yield Mapping and Assessment 

Peak NDVI estimated on a per-pixel basis from a stack of Landsat-8/OLI and Sentinel-2A/MSI 

images from March to June was selected as a primary parameter for assessing winter wheat yield. 

In multiple studies, the seasonal peak NDVI has been shown to be strongly correlated with yields 

for a variety of crop types [5,8–10]. Since there are no available historical data for combination of 

Landsat-8 and Sentinel-2A images to correlate with yield measurements and build a crop yield 

model at district scale, we used a MODIS-derived winter wheat yield model that was calibrated for 

US and directly applied for Ukraine [7,10]. More specifically, the model takes advantage of daily 

MODIS data at Climate Modeling Grid (CMG) scale at 0.05 resolution to capture an NDVI peak 

and correlate with the yield. However, since proportions of winter wheat are variable within the 

CMG pixels, the model establishes a generalized relationship between the slope of NDVI against 

yield and pixel purity [10]: s = 9.61–0.05*m, where m is the winter wheat proportion at CMG scale 

(from 0 to 100%), and s is the slope such as yield = s*NDVI. 
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In case of Landsat-8–Sentinel-2A images, we can assume that purity at 30 m level is 100%, i.e. 

m = 100. Therefore, we obtain the slope of 4.61 to be applied to an NDVI peak calculated from the 

combination of Landsat-8 and Sentinel-2A data to map winter wheat yield at 30 m resolution. 

Therefore, the MODIS-derived coarse resolution (0.05) winter wheat yield model, that was 

calibrated for Kansas (US) [10], is downscaled using winter wheat purity as a proxy to derive the 

slope between the peak NDVI and yield at 30 m resolution. This slope (4.61) is directly applied to 

the peak NDVI calculated from the stack of Landsat-8–Sentinel-2A images to derive a winter 

wheat yield map at 30 m resolution. These are used to estimate district-level yields by averaging 

yields at 30 m resolution over winter crop masks (section 3.1) for each district. In addition to the 

average, a standard deviation and coefficient of variation (CV), defined as a ratio between the 

standard deviation and the mean, is estimated as well. The estimated district-level yields are 

validated using independent reference data (section 2.1) collected at district level in Kirvohradska 

oblast (Ukraine) in 2016. 

To improve peak NDVI estimation, we applied the GDD-based approach developed by 

Franch et al. GDD is used as a proxy to predict an NDVI peak using historical relationship 

between NDVI and GDD. GDD is calculated as the average daily maximum (Tmax) and minimum 

temperatures (Tmin) minus a base temperature (Tbase) ܦܦܩ ൌ	 ೘்ೌೣା்೘೔೙

ଶ
െ ௕ܶ௔௦௘, where, GDD = 0 

if [(Tmax + Tmin)/2 < Tbase], and with Tbase = 0. Daily GDD is used to calculate accumulated GDD 

starting from the biofix date which was set to January, 1. We refer the reader to [7] for the details 

of this approach. 

3.3. Validation Metrics 

For comparison of satellite-derived winter crop areas and winter wheat yields with reference 

datasets at district level, we used the APU analysis metrics [28]: 

 accuracy (A) that shows the average bias of the estimates 

ܣ ൌ 	 ଵ
ே
∑ ሺ ௜ܲ െ ௜ܱሻ
ே
௜ୀଵ ,    (2) 

 precision (P) that shows repeatability of the estimates 

ܲ ൌ 	ට ଵ

ேିଵ
∑ ሺ ௜ܲ െ ௜ܱ െ ሻଶேܣ
௜ୀଵ ,  (3) 

 uncertainty (U) that is the root mean squared error 

ܷ ൌ	ටଵ

ே
∑ ሺ ௜ܲ െ ௜ܱሻଶே
௜ୀଵ ,   (4) 

 relative uncertainty (rU) normalized by an average of reference values: 

ሺ%ሻܷݎ ൌ ௎
భ
ಿ
∑ ை೔
ಿ
೔సభ

ൈ 100%	,   (5) 

where ௜ܲ and ௜ܱ are computed (from satellites) and observed (from reference) values, respectively. 
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4. Results & Discussion 

4.1. Winter Crop Mapping 

The GMM approach to winter crop mapping was applied to the peak NDVI calculated for the 

time period from March 1 to April 6 using a combination of Landsat-8 and Sentinel-2A, as well as 

using each of them separately. This was done in order to assess an added value of the combined use 

of these datasets. The indicated period (March 1 to April 6) was selected in such a way to capture 

NDVI development of winter crops and avoid confusion with early spring cereals that were planted 

beginning of March in 2016. Unfortunately, capturing peak NDVI during the emergence in late 

autumn of the previous year (e.g. during November) usually does not improve mapping of winter 

crops because of: (i) considerable cloud cover and unavailability of cloud-free imagery in that time 

period; (ii) discrepancy of emergence state when much of winter crops have low NDVI. The 

derived maps were used to calculate the area of winter crops at districts level by pixel-counting. 

These estimates were compared to reference values and are presented in Table 1 and Figure. 9. The 

derived winter crop map using Landsat-8 and Sentinel-2A is illustrated in Figure 10. 

Table 1. Comparison of satellite-derived winter crop areas with official statistics  

on harvested areas at district level. Estimates of the APU metrics are given in ha. 

Metric LC8-S2A LC8 S2A 

A 612 1081 839 
P 1719 5061 1962 

U 1785 5056 2090 

rU, % 11.6 32.7 13.5 

R2 0.90 0.64 0.88 
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C 

Figure. 9. Plots of official statistics on harvested winter crop areas against satellite-derived 

ones using a combination of Landsat-8 and Sentinel-2A (A), Landsat-8 only (B), and  

Sentinel-2A only (C). 

 

Figure 10. The final map of winter crops derived from Landsat-8 and Sentinel-2A images 

using the GMM approach for Kirohradska oblast in 2016. 
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Combination of Landsat-8 and Sentinel-2A allowed us to achieve R2 = 0.9 and relative 

uncertainty of 11.6% when estimating winter crop areas at district level. When comparing to 

reference ground measurements, the accuracy of identifying winter wheat fields was 94.1%. It 

should be noted that these results were achieved in an automatic way utilizing knowledge on crop 

calendar and without utilizing any ground truth data. The use of Landsat-8 images only did not 

produce satisfactory results (R2 = 0.64 and relative uncertainty of 32.7%) because of unavailability 

of cloud-free images early spring especially in the eastern districts of the oblast whereas the use of 

Sentinel-2A yielded R2 = 0.88 and relative uncertainty of 13.5%. Overall, these results demonstrate 

the benefits, in a quantitative way, of the combined use of Landsat-8 and Sentinel-2A satellites 

comparing to the single-satellite usage.  

4.2. Winter Wheat Yield Mapping 

Comparisons of the estimated winter wheat yields at district level are presented in Table 2 and 

Figure 11. 

Table 2. Comparison of satellite-derived winter wheat yields with official statistics at district 

level without using GDD and using GDD. Estimates of the APU metrics are given in t/ha. 

 No GDD GDD 

Metric LC8-S2A LC8 S2A LC8-S2A LC8 S2A 

A -0.17 -0.48 -0.34 -0.06 -0.40 -0.22 

P 0.26 0.31 0.32 0.26 0.31 0.32 

U 0.31 0.57 0.46 0.26 0.50 0.38 

rU, % 7.7 14.3 11.5 6.5 12.5 9.6 

R2 0.45 0.29 0.28 0.50 0.31 0.24 
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C 

Figure 11. Plots of official statistics on winter wheat yield against satellite-derived ones 

(without GDD) using a combination of Landsat-8 and Sentinel-2A (A), Landsat-8 only (B), 

and Sentinel-2A only (C). 

As with winter crop areas, the combination of Landsat-8 and Sentinel-2A outperformed the 

single satellite usage in terms of APU metrics and R2. When using either Landsat-8 or Sentinel-2A, 

the peak NDVI approach underestimated official statistics by -0.48 t/ha and -0.34 t/ha, respectively, 

while their combination improved accuracy to -0.17 t/ha. In terms of uncertainty, the peak NDVI 

approach for the Landsat-8–Sentinel-2A combination provided 0.31 t/ha (7.7%) whereas those 

values were 1.8 times higher for the Landsat-8 usage only (0.57 t/ha, 14.3%) and 1.5 times higher 

for the Sentinel-2A usage only (0.46 t/ha, 11.5%). These results clearly demonstrate the importance 

of higher observation frequency achieved with combination of Landsat-8 and Sentinel-2A satellites 

comparing to the single use. An example of the map showing spatial variability of estimated winter 

wheat yields at field scale is show in Figure 12. 
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Figure 12. Variability of winter wheat yields at field scale. Yields values were calculated only 

for winter crop fields shown in Figure 10. 

The results presented in Figure 11 (A) were further analyzed for errors. Overall, the points 

can be divided into 3 groups. The first group is composed of 3 points (shown in orange) 

representing districts with official statistics yields values close to 4 t/ha and underestimated by 

the peak NDVI approach. These districts feature relatively large values of CV of 21% whereas 

the average CV for all other districts is approximately 13%. The reason for that is smaller number 

of images available for these districts (mainly in the eastern part) which reduces ability to capture 

the peak NDVI. The second group (shown in red) is composed of districts with official statistics 

yields larger than 4 t/ha and the peak-NDVI approach underestimating it. The reason for that is 

saturation of NDVI occurs and the proposed approach fails to discriminate yield values at this 

level. Figure 13 shows an example of NDVI time-series from Landsat-8 and Sentinel-2A 

satellites for the districts with reference yields of 4.3 t/ha and 3.4 t/ha, and estimated yields of 

4.04 ± 0.40 t/ha and 3.65 ± 0.64 t/ha, respectively, by the peak-NDVI approach. For the district 

with a higher yield value, NDVI quickly becomes 0.8 on April 29 (day of the year (DOY) 120) and 

not changing considerably (within 0.8–0.9) during the following days 50 days (until June 18 or 

DOY = 170). The NDVI values start to decrease when the senescence phase occurs and the crop is 

eventually harvested. This plot also shows the importance of the integration of both datasets: when 

using just Sentinel-2A data, we miss the peak. 
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Figure 13. A combined Landsat-8–Sentinel-2A derived NDVI time-series of winter wheat 

for two districts with reference yields at 4.3 t/ha and 3.4 t/ha and satellite-derived yields of 

4.04 ± 0.40 t/ha and 3.65 ± 0.64 t/ha, respectively. 

The third group (shown in green) involves 8 districts with moderate yield values of up to 4 t/ha. 

The proposed approach is able to explain variations in the winter wheat yield (R2 = 0.8) giving a 

bias of 0.1 t/ha and uncertainty of U = 0.13 t/ha (3.5%). 

Additional experiments were performed to explore the effect of using GDD to predict the peak 

NDVI. In general, adding GDD improved estimates as, for example for the LC8-S2A case, the 

relative uncertainty decreased from 7.7% to 6.5% and R2 increased from 0.45 to 0.5. However, 

adding GDD to the single satellite did not reach the performance of the combined LC8-S2A use 

without GDD (Table 2). This once again highlights the importance of the more dense time-series of 

LC8-S2A. 

5. Conclusions 

This study attempted to explore the combined use of Landsat-8 and Sentinel-2A satellites to 

winter crop mapping and winter wheat yield assessment at regional level. For both problems, the 

increased frequency of observations from the Landsat-8 and Sentinel-2A satellites was critical as it 

allowed us to achieve better performance comparing to the single satellite usage. For winter crop 
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mapping, we adopted a previously developed approach for MODIS that allowed automatic winter 

crop mapping taking into account a priori knowledge on crop calendar without utilizing ground 

reference data. When comparing to official statistics on winter crop harvested areas, this approach 

gave R2 = 0.9 and relative error of 11.6%. These results are encouraging as with little data inputs 

(crop calendar and cropland mask) and high temporal resolution of Landsat-8–Sentinel-2A 

satellites, it would allow the creation of winter crop maps at global scale at 30 m resolution. 

For winter wheat yield mapping, we downscaled the generalized empirical model that is based 

on peak NDVI approach and implemented using MODIS data, and directly applied this model to 

the Landsat-8–Sentinel-2A images. Overall, the downscaled peak-NDVI approach with combined 

use of Landsat-8 and Sentinel-2A images gave uncertainty of 0.31 t/ha (7.7%) and R2 = 0.45 

substantially outperforming Landsat-8 only (1.8 times in terms of uncertainty) and Sentinel-2A 

only (1.5 times). The model was efficient in explaining moderate yield values (< 4 t/ha) with R2 = 0.8; 

however, it failed to capture the variance of high yield values (> 4 t/ha) due to NDVI saturation. 

Conflict of interest 

Both authors declare no conflicts of interest in this paper. 

References 

1. Becker-Reshef I, Justice C, Sullivan M, et al. (2010) Monitoring global croplands with coarse 

resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote 

Sens 2: 1589-1609. 

2. Lobell DB (2013) The use of satellite data for crop yield gap analysis. Field Crops Res 143: 56-64. 

3. Bokusheva R, Kogan F, Vitkovskaya I, et al. (2016) Satellite-based vegetation health indices as 

a criteria for insuring against drought-related yield losses. Agric Meteorol 220: 200-206. 

4. Skakun S, Kussul N, Shelestov A, et al. (2016) The use of satellite data for agriculture drought 

risk quantification in Ukraine. Geomat, Nat Hazards Risk 7: 901-917. 

5. Johnson DM (2016) A comprehensive assessment of the correlations between field crop yields 

and commonly used MODIS products. Intern J Appl Earth Obs Geoinform 52: 65-81. 

6. López-Lozano R, Duveiller G, Seguini L, et al. (2015) Towards regional grain yield forecasting 

with 1 km-resolution EO biophysical products: strengths and limitations at pan-European level. 

Agric For Meteorol 206: 12-32. 

7. Franch B, Vermote EF, Becker-Reshef I, et al. (2015) Improving the timeliness of winter 

wheat production forecast in the United States of America, Ukraine and China using MODIS 

data and NCAR Growing Degree Day information. Remote Sens Environ 161: 131-148. 

8. Kogan F, Kussul N, Adamenko T, et al. (2013) Winter wheat yield forecasting in Ukraine 

based on Earth observation, meteorological data and biophysical models. Intern J Appl Earth 

Obs Geoinform 23: 192-203. 



185 

AIMS Geosciences Volume 3, Issue 2, 163-186 

9. Mkhabela MS, Bullock P, Raj S, et al. (2011) Crop yield forecasting on the Canadian Prairies 

using MODIS NDVI data. Agric For Meteorol 151: 385-393. 

10. Becker-Reshef I, Vermote E, Lindeman M, et al. (2010). A generalized regression-based model 

for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens 

Environ 114: 1312-1323. 

11. Salazar L, Kogan F, Roytman L (2007) Use of remote sensing data for estimation of winter 

wheat yield in the United States. Intern J Remote Sens 28: 3795-3811. 

12. Huang J, Sedano F, Huang Y, et al. (2016) Assimilating a synthetic Kalman filter leaf area 

index series into the WOFOST model to improve regional winter wheat yield estimation. Agric 

For Meteorol 216: 188-202. 

13. Huang J, Tian L, Liang S, et al. (2015) Improving winter wheat yield estimation by 

assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST 

model. Agric For Meteorol 204: 106-121. 

14. de Wit A, Duveiller G, Defourny P (2012) Estimating regional winter wheat yield with 

WOFOST through the assimilation of green area index retrieved from MODIS observations. 

Agric For Meteorol 164: 39-52. 

15. Kolotii A, Kussul N, Shelestov A, et al. (2015) Comparison of biophysical and satellite 

predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, 

Remote Sens Spat Inf Sci 40: 39-44. 

16. Kowalik W, Dabrowska-Zielinska K, Meroni M, et al. (2014) Yield estimation using  

SPOT-VEGETATION products: A case study of wheat in European countries. Intern J Appl 

Earth Obs Geoinform 32: 228-239. 

17. Morell FJ, Yang HS, Cassman KG, et al. (2016) Can crop simulation models be used to 

predict local to regional maize yields and total production in the US Corn Belt? Field Crops 

Res 192: 1-12. 

18. Gao F, Anderson MC, Zhang X, et al. (2017) Toward mapping crop progress at field scales 

through fusion of Landsat and MODIS imagery. Remote Sens Environ 188: 9-25. 

19. Doraiswamy PC, Hatfield JL, Jackson TJ, et al. (2004) Crop condition and yield simulations 

using Landsat and MODIS. Remote Sens Environ 92: 548-559. 

20. Baez-Gonzalez AD, Chen PY, Tiscareno-Lopez M, et al. (2002) Using satellite and field data with 

crop growth modeling to monitor and estimate corn yield in Mexico. Crop Sci 42: 1943-1949. 

21. Lobell DB, Thau D, Seifert C, et al. (2015) A scalable satellite-based crop yield mapper. 

Remote Sens Environ 164: 324-333. 

22. Gallego FJ, Kussul N, Skakun S, et al. (2014) Efficiency assessment of using satellite data for 

crop area estimation in Ukraine. Intern J Appl Earth Obs Geoinform 29: 22-30. 

23. State Statistics Service of Ukraine. Quality reports. Standard report on quality of the state 

statistical observation over areas, gross harvests and yields of agricultural crops, fruit, berries 

and grapes. Available from: http://ukrstat.gov.ua/suya/st_zvit/st_zvit_e/st_zvit_e.htm. 



186 

AIMS Geosciences Volume 3, Issue 2, 163-186 

24. Roy DP, Wulder MA, Loveland TR, et al. (2014) Landsat-8: Science and product vision for 

terrestrial global change research. Remote Sens Environ 145: 154-172. 

25. Drusch M, Del Bello U, Carlier S, et al. (2012) Sentinel-2: ESA's optical high-resolution 

mission for GMES operational services. Remote Sens Environ 120: 25-36. 

26. Vermote E, Justice C, Claverie M, et al. (2016) Preliminary analysis of the performance of the 

Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185: 46-56. 

27. Zhu Z, Wang S, Woodcock CE (2015) Improvement and expansion of the Fmask algorithm: 

cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote 

Sens Environ 159: 269-277. 

28. Vermote EF and Kotchenova S (2008). Atmospheric correction for the monitoring of land 

surfaces. J Geophys Res: Atmos 113: D23. 

29. Storey J, Roy DP, Masek J, et al. (2016) A note on the temporary misregistration of Landsat-8 

Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. 

Remote Sensi Environ 186: 121-122. 

30. Skakun S, Roger JC, Vermote E, et al. (2017) Automatic sub-pixel co-registration of Landsat-8 

Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase 

correlation and machine learning based mapping. Int J Digit Earth. 

31. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. 

Remote Sens Environ 8: 127-150. 

32. Molod A, Takacs L, Suarez M, et al. (2015) Development of the GEOS-5 atmospheric general 

circulation model: evolution from MERRA to MERRA2. Geosci Model Dev 8: 1339-1356. 

33. Skakun S, Franch B, Vermote E, et al. (2017) Early season large-area winter crop mapping using 

MODIS NDVI data and growing degree days information. Remote Sens Environ 195: 244-258. 

34. Bishop CM (2006) Pattern Recognition and Machine Learning. New York: Springer. 

35. Lavreniuk M, Kussul N, Skakun S, et al. (2015) Regional retrospective high resolution land 

cover for Ukraine: Methodology and results. In: 2015 IEEE International Geoscience and 

Remote Sensing Symposium, IGARSS2015, New York: IEEE, 3965-3968. 

 

 

 

© 2017 Sergii Skakun, et al., licensee AIMS Press. This is an 

open access article distributed under the terms of the Creative 

Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0) 

 




