
1. Introduction
“Fire regime” is a widely used concept in fire ecology. It originated in the late 19th century, primarily in the 
French scientific literature on fire practices in Africa. The “fire regime” concept gained widespread use in distur-
bance ecology since the 1960s and refers to a complementary collection of fire-related parameters that are typi-
cally defined differently by ecologists, firefighters, and fire managers (Krebs et  al.,  2010). The definition of 
fire regime as “a particular combination of fire characteristics such as fire frequency, size, intensity, severity, 
seasonality, and fire type” (Gill, 1975) is commonly referenced in works that use global fire satellite products 
(e.g., Archibald et al., 2013; Chen et al., 2017; Chuvieco et al., 2008; Le Page et al., 2008). Maps of fire regimes 
are essential for estimating the departure from historical conditions, understanding what drives the geographical 
distribution of fire regimes, evaluating process-based fire models (Murphy et al., 2011), and for quantifying the 
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consequences of fire on biodiversity, ecosystem services, and human society (Aldersley et  al., 2011; Lavorel 
et al., 2007). However, despite an abundance of published studies and the importance of fire-regime maps, an 
unambiguous, quantitative definition of fire regime does not exist. Controversy remains as to which fire charac-
teristics should be included and how those characteristics should be defined. As a result, maps produced using 
different definitions of fire regimes are incompatible, precluding consistent quantification of changes in fire 
activity through time.

A common approach for delineating fire regimes is using several fire metrics in an empirical, data-driven frame-
work (e.g., Archibald et al., 2013; Conedera et al., 2018; Faivre et al., 2011; Le Page et al., 2008). In recent 
decades, virtually all databases of fire extent and fire characteristics rely on satellite data. Multi-decadal higher 
resolution (30–250 m) databases are available for North America (e.g., MTBS (Picotte et al., 2020), ABoVE 
(Loboda et al., 2017)), Australia (e.g., NAFI (NAFI, 2022)), and part of Europe (e.g., EFFIS (San-Miguel-Ayanz 
et al., 2012)), whereas coarse resolution (500 m) remotely sensed imagery is, for most of the globe, the only 
available data source that provides coherent multi-temporal fire spatial information since the year 2000 (Benali 
et al., 2017). The use of global satellite products plays a key role in characterizing fire regimes from the local 
to the global scale by allowing the systematic computation of fire-related summary metrics such as fire extent, 
inter-annual variability, seasonality, and intensity (Chen et al., 2017). The choice of fire metrics is constrained 
to which variables can be quantified at the chosen scale from the selected source of fire data. Fire regime stud-
ies typically delineate fire regimes geographically by identifying spatial clusters by way of principal compo-
nent analysis (PCA, Jiménez-Ruano et al., 2017; Whitman et al., 2015), clustering (e.g., hierarchical (Conedera 
et al., 2018), k-means (Chen et al., 2017)) or a combination of both (Archibald et al., 2013; Le Page et al., 2008).

While the above-mentioned approach is appealing due to its simplicity, it does not take into consideration 
the underlying biophysical processes that regulate fire activity, and it is inherently dependent on a number of 
implicit assumptions. The resulting “fire regime” classification is sensitive to the choice of fire metrics taken 
into consideration, the mathematical formulation of the metrics, and the spatial scale at which the metrics are 
computed. Delineating fire regimes based solely on a small number of fire metrics can result in attributing the 
same fire-regime label to regions where the set of considered fire metrics happens to assume similar values, but 
the environmental conditions and the ecological implications of fires are very different. Additionally, studies that 
classify fire regimes from remotely sensed data are fundamentally constrained by the length of the available data 
archive, which go back at most to 2000 for consistent, well-calibrated global satellite data (Mouillot et al., 2014). 
Together these issues can lead to a misinterpretation of the processes that drive current fire activity, as well as a 
misunderstanding of how fire activity might change in the future.

Because of the inherent ambiguity of the concept of fire regime, we propose in this study a new analysis frame-
work based on fire regions, drawing from the concept of climate niche. This concept is commonly employed 
in the ecological literature and broadly defined as “the states of the environment which would permit a species 
to exist” (Hutchinson, 1957). More specifically, in terrestrial ecology, climate niches are defined in terms of 
geographic and climatic factors that define the habitat of a species (Bonetti & Wiens, 2014; Holt, 2009). We 
thus define “fire regions” as areas that are homogeneous in terms of environmental conditions that promote fuel 
accumulation and desiccation, adopting a conceptual model that links specific climate metrics to the key drivers 
of fire proposed by Bradstock (2010).

The proposed framework was applied in Africa and Australia, the two fire-prone continents responsible for over 
75% of the global burned area (Giglio et al., 2018). Tropical savannas are the dominant biome affected by fire 
on both continents, followed by Xeric shrublands and Mediterranean forest and woodlands (Giglio et al., 2018; 
Melchiorre & Boschetti, 2018; van der Werf et al., 2017). Similarly, a global study by Archibald et al. (2013) 
that mapped fire regimes on both continents found that Africa and Australia shared the same fire regimes except 
for the parts of tropical savannas in Africa that experienced fires smaller in size and with lower intensity, which 
was primarily attributed to differences in anthropogenic pressure. However, studies by Hantson et al. (2017) and 
Lehmann et al. (2014) reported dissimilarities in the overall relationships between fire-regime metrics, moisture, 
and vegetation cover, with the implication that savannas in these two continents might respond differently to 
future climatic changes.

This study aims to define continental-scale maps of major regions with similar environmental conditions that drive 
fire activity in Africa and Australia. The hypothesis is that the fire regions delineated solely from environmental 
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drivers would have distinct values of the fire activity metrics, whereas variations of fire activity within a region 
would be an indicator of anthropogenic pressure. To this end, we first selected the most important drivers of fire 
activity in each continent and then used these drivers to define the multi-dimensional environmental space, which 
was subsequently clustered into distinct fire regions.

Fire-regime metrics (fire frequency, intensity, and size) were utilized to verify the hypothesis that the set of key 
environmental drivers of fire activity can provide sufficient information to separate regions with different fire 
characteristics. Finally, we located areas with various degrees of human pressure and explored the gradient of 
anthropogenic influences on fire activity across the environmental space. We intend that aggregated fire regions 
can be used as a scale unit for computing fire statistics and assessing current and future trends as a more ecolog-
ically meaningful alternative to current fire-regime maps.

2. Data
2.1. Potential Environmental Drivers of Fire Activity

Our proposed approach for defining fire regions is based on the conceptual model of key drivers of pyrogeogra-
phy proposed by Bradstock (2010), where fire activity is restricted by four “switches”: biomass, availability to 
burn, fire spread, and ignition. Based on previous studies, we identified 12 environmental variables that poten-
tially influence Bradstock's “switches” on a broad scale, including total precipitation, temperature, their intra- and 
inter-annual variability, water deficit, evapotranspiration, vegetation type, and biomass (Table 1). All variables 
were calculated/extracted within individual grid cells of a global 0.5° analysis grid, using the same temporal inter-
val (March 2002–February 2019) used to generate the fire activity metrics (Section 2.3). The March-February 
optimal fire year definition (Boschetti & Roy, 2008) was used instead of the January-December calendar year to 
avoid artifacts in the time series of annual fire metrics due to the timing of the fire season in Northern Hemisphere 
Africa (November-February), which would be split between calendar years. Because several of these variables 
are highly correlated, we retained only six based on the selection procedure described in Section 3.1. For brevity, 
only these six are described in detail here (Figure S1 in Supporting Information S1):

•  Mean annual temperature (Temp, °C) was defined as the annual average over 17 years. Temp was calcu-
lated from the Famine Early Warning Systems Network Land Data Assimilation System (FLDAS, McNally 
et  al.,  2017) that used outputs from Modern-Era Retrospective Analysis for Research and Applications 
(MERRA-2, Rienecker et  al.,  2011) and Climate Hazards Group InfraRed Precipitation with Station data 
(CHIRPS, Funk et al., 2015). This data set is available as monthly means at 0.1° resolution. Many authors 
consider Temp an important driver of global fire activity (Aldersley et al., 2011; Gillett et al., 2004; Krawchuk 
& Moritz,  2011). Lehmann et  al.  (2014) depicted the strong relationship between temperature and fire 
frequency in Africa and Australia due to temperature's ability to induce plant growth, that is, fuel accumula-
tion, and reduce fuel moisture, which creates favorable conditions for fire ignition and propagation (Daniau 
et al., 2012; Flannigan et al., 2009).

•  Precipitation Interannual Variability (P_Var) is calculated as the interannual coefficient of rainfall variation, 
that is, the standard deviation of the time series of annual rainfall divided by its mean based on FLDAS data; 
the annual precipitation totals were computed using the fire year definition. Moisture fluctuation, specifically 
in semi-arid regions, affects fuel accumulation rates and fuel connectivity, which enables bigger, more intense 
fires (Bradstock, 2010; Murphy et al., 2013). Consequently, the extent of area burned varies substantially 
between years with a “wet” dry season and with a “dry” dry season (Mulqueeny et al., 2011). Additionally, 
in forested regions where high levels of moisture usually prevent fire ignition and propagation, prolonged 
droughts can create suitable conditions for fire (Cochrane, 2003; van der Werf et al., 2008).

•  Precipitation amplitude (P_Amp, mm) was defined as the difference in average precipitation between the wet 
and dry seasons following the Saha et al. (2019) approach (see SI for calculation) based on FLDAS data. It is 
widely accepted that the temporal fluctuation in moisture availability is one of the main drivers of fire activity 
(Krawchuk et al., 2009; Markham, 1970; Murphy & Bowman, 2007; Staver et al., 2011), and here P_Amp 
was used to characterize the weather conditions that favor desiccation, which is necessary for fire ignition and 
propagation once sufficient fuel is accumulated.

•  Seasonality index (P_SI) characterizes the extent to which a yearly precipitation cycle can be partitioned 
into well-defined wet and dry seasons (Saha et al., 2019, SI), thus complementing P_Amp in describing the 
intra-annual precipitation variability. P_SI assumes values close to 1 if a particular region has two distinct 
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precipitation seasons (i.e., one wet and one dry season) and close to 0 otherwise. Prolonged dry seasons 
in mesic savannas desiccate fuels and contribute to high burning rates (Leys et  al.,  2018; van der Werf 
et al., 2008). In wet environments, the absence of a highly defined dry season promotes tree cover growth, 
where an increase in the duration of the dry season reduces tree cover and increases the chances of fire occur-
rence (Staver et al., 2011).

•  Percent tree cover (Tree, %) calculated from the Collection 6 MODIS MOD44B Global Vegetation Contin-
uous Fields product (DiMiceli et al., 2017). Fire behavior varies strongly across the savanna-forest bounda-
ries (Hoffmann et al., 2012; Zubkova et al., 2019). The type of vegetation influences the likelihood of fire 
(Lehmann et al., 2011), and Archibald et al. (2009) identified tree cover as one of the main drivers of the 
amount of burned area in Southern Africa due to its negative impact on grass biomass and, therefore, the fire 
spread.

•  Mean annual actual evapotranspiration (AET, mm) was acquired from TerraClimate (Abatzoglou, Dobrowski, 
et al., 2018) based on a one-dimensional water-balance model (WBM, Willmott et al., 1985). Fuel produc-
tivity and dryness are a function of climatic water balance (Boer et al., 2016). At annual timescales, AET can 
be considered a reliable predictor of continental patterns of primary productivity (Rosenzweig, 1968; Yang 
et al., 2013).

Variable name
Abbreviation and 

units Description Source

Climate

 Mean annual precipitation P, mm Average of the time series of annual total 
precipitation

FLDAS (the Famine Early Warning Systems 
Network Land Data Assimilation System) 

(McNally et al., 2017)

 Precipitation amplitude (*) P_Amp, mm Difference in average precipitation between wet and 
dry seasons. Calculated using Saha et al. (2019) 

approach

FLDAS (McNally et al., 2017)

 Seasonality index (*) P_SI, unitless Measure of precipitation seasonality (Saha 
et al., 2019)

FLDAS (McNally et al., 2017)

 Precipitation interannual 
variability (*)

P_Var, unitless Coefficient of variation of the annual total 
precipitation (the standard deviation of the time 

series divided by the mean)

FLDAS (McNally et al., 2017)

 Mean annual temperature (*) Temp, °C Annual temperature average over 17 years (Mar 
2002–February 2019)

FLDAS (McNally et al., 2017)

 Temperature amplitude T_Amp, °C Difference in average temperature between cold and 
hot seasons (Saha et al., 2019)

FLDAS (McNally et al., 2017)

 Mean temperature of the 
warmest month

T_Max, °C Monthly temperature averaged over the month with 
the highest temperature

FLDAS (McNally et al., 2017)

 Actual evapotranspiration (*) AET, mm Calculated using a Thornthwaite-Mather climatic 
water-balance model (Willmott et al., 1985)

TerraClimate (Abatzoglou, Williams, et al., 2018)

 Potential evapotranspiration PET, mm Calculated using Penman-Monteith approach 
(Allen et al., 1998)

TerraClimate (Abatzoglou, Williams, et al., 2018)

 Climatic water deficit DEF, mm Defined as the difference between PET and AET TerraClimate (Abatzoglou, Williams, et al., 2018)

Vegetation

 Tree cover (*) Tree, % Percent tree cover MOD44B Version 6 (https://modis.gsfc.nasa.gov/
data/dataprod/mod44.php)

 Aboveground biomass Biomass, Mg C/ha Aboveground biomass carbon density for 2010 Global Aboveground and Belowground 
Biomass Carbon Density Maps (https://doi.

org/10.3334/ORNLDAAC/1763)

Note. An asterisk indicates the six climate and vegetation variables retained after the initial screening (Section 3.1). All climate variables are calculated from 17 years 
of data (2002–2019).

Table 1 
Summary of the Potential Drivers of Fire Activity Considered in the Analysis

https://modis.gsfc.nasa.gov/data/dataprod/mod44.php
https://modis.gsfc.nasa.gov/data/dataprod/mod44.php
https://doi.org/10.3334/ORNLDAAC/1763
https://doi.org/10.3334/ORNLDAAC/1763
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2.2. Anthropogenic Pressure

Human presence profoundly alters fire activity in any ecosystem, with multiple direct and indirect effects on the 
number, extent, and intensity of fire events. Humans increase the number of ignitions but also lead to fire suppres-
sion, as well as alterations to vegetation composition, biomass availability, and landscape connectivity, that is, 
the human population density was found to impact three of the four “switches” of the Bradstock (2010) model 
(Aldersley et al., 2011; Archibald, 2016; Archibald et al., 2009; Kahiu & Hanan, 2018). In addition to popula-
tion density, we considered the proportion of natural vegetation and the livestock density as variables reflect-
ing different aspects of anthropogenic pressure relevant to fire (Archibald, 2016; Archibald et al., 2009, 2013; 
Guyette et al., 2002; Sanderson et al., 2002; Syphard et al., 2017). The proportion of natural vegetation is a proxy 
for fuel connectivity and landscape fragmentation, a decrease of which negatively impacts fire spread, whereas 
grazers remove biomass and compete with fire for fuel, thus having a negative effect on the area burned and on 
fire intensity.

The three gridded anthropogenic pressure variables are defined as follows:

•  Population density (Pop, units: people/km 2): the population density was calculated from the Gridded Popula-
tion of the World (GPWv4) 2010 data set (CIESIN, 2016)

•  Proportion of natural vegetation (Nat_veg, unitless [0–1]): defined as the proportion of all land cover types 
excluding cropland, urban, and unburnable surfaces in a grid cell based on the Climate Change Initiative 
Global Land Cover (CCI LC) product (2015, CCI-LC-PUGV2, 2017).

•  Livestock density (LS, units: TLU/km 2): defined in equivalent Tropical Livestock Units (TLU), applying the 
conversion factors for cattle (0.70), sheep and goats (0.10) proposed by Pica-Ciamarra et al.  (2007) using 
Gridded Livestock of the World (GLW3) 2010 (Gilbert et al., 2018).

The anthropogenic pressure variables were used in the evaluation of fire regions (Section 3.3).

2.3. Fire Activity Metrics

Three metrics of fire activity, commonly used in published local to global fire studies, were calculated on 0.5° 
grid cells from the available MODIS fire products (Figure S3 in Supporting Information S1):

•  Percent mean annual burned area (BA, %), calculated as the annual average over 17 years from the Collection 
6 MODIS global burned area product (MDC64A1). MCD64A1 is a monthly gridded product, mapping the 
burned area location and approximate day of burning at 500 m resolution (Giglio et al., 2009).

•  Maximum fire size (FSize, km 2) was defined as the 95th percentile of the fire size distribution. The fire size 
distribution was calculated by extracting individual fire events from the MCD64A1 product through a novel 
flood-fill algorithm that uses the spatial and temporal burned area information and the uncertainty layer to 
define a locally adjusted temporal threshold (Humber, 2019). Due to the reduced accuracy of small fire detec-
tion (Boschetti et al., 2019), fires covering less than five cells (<1.07 km 2) on the 500-m MODIS sinusoidal 
grid were excluded from the analysis.

•  Maximum fire radiative power as a proxy for fire intensity (FRP, MW) was defined as the 95th percentile 
of the FRP distribution extracted from the Collection 6 MODIS MCD14ML fire location product (Giglio 
et al., 2016). MCD14ML is a summary product reporting all the active fires detected as actively burning at 
the satellite overpass under relatively cloud-free conditions with a nominal spatial resolution of 1 km. FRP 
was calculated by taking into account the variable pixel size in the across-track direction (Giglio, 2013). Only 
fire points with “nominal” or “high” confidence, detected within natural land, were included in the analysis.

As with the environmental variables, fire metrics were computed using the fire year definition utilizing data from 
March 2002 to February 2019. The first two years of MODIS data (2000–2001) were not used due to sensor 
calibration problems and acquisition outages (Giglio et al., 2016).

The fire activity metrics were used to inform the selection of the environmental variables (Section 3.1) and eval-
uate the resulting fire regions (Section 3.3).
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2.4. Burnable Land Mask

To avoid assigning fire regions to areas that do not experience fire activity due to the lack of vegetation, we 
created a burnable land mask. First, the proportion of burnable vegetation (i.e., all land cover types except urban, 
bare soil, and water from the CCI LC product) was calculated within each 0.5° cell. The relationship between BA 
and the proportion of vegetation was subsequently analyzed within each continent. We found that BA increases 
with the proportion of burnable land following an exponential distribution, with nominal fire activity in areas 
of low vegetation cover (<0.74 in Africa, <0.88 in Australia; Figure S4 in Supporting Information S1). These 
thresholds were calculated using the Unit Invariant Knee point as an objective estimator for the elbow criterion 
(Christopoulos, 2016). All grid cells with the proportion of burnable vegetation below estimated thresholds were 
excluded from further analysis.

3. Methods
The fire regions were mapped by means of a statistical analysis based on principal component (PCA) and cluster-
ing of gridded environmental driver variables, following established approaches for identifying regions with simi-
lar spatiotemporal characteristics. PCA is used to identify patterns in the data which might not be obvious when 
a data set contains a large number of variables that are not statistically independent (Le Page et al., 2008), which 
is common in ecological and climatological studies (e.g., Abatzoglou et al., 2009; Archibald et al., 2013; Faivre 
et al., 2011; Whitman et al., 2015). While PCA can handle some degree of multicollinearity, previous research 
has suggested setting aside highly correlated variables to reduce the bias of PCA results (Jiang & Eskridge, 2000). 
Including the nearly-redundant variables can cause the PCA to overemphasize their contribution. For this reason, 
the first processing step (Figure 1, green dotted box) was the selection of the input variables, removing those 
with high collinearity (Section 3.1). The fire regions were then identified through hierarchical clustering of the 
principal components (PC) of the inputs, a method commonly used in fire studies since (a) it does not require the 
prior definition of the number of target clusters and (b) it is suitable for the definition of biogeographic regions 
which are hierarchically arranged (Conedera et al., 2018; Faivre et al., 2011; Le Page et al., 2008). The clusters 
were aggregated using the WWF Terrestrial Ecoregions of the World (Olson et al., 2001), resulting in the final 
fire region map (Figure 1 red dotted box, Section 3.2). Finally, the fire region map was evaluated by analyzing the 
difference in fire characteristics across regions and the impact of anthropogenic factors within regions (Figure 1 
blue dotted box, Section 3.3).

3.1. Selection of the Environmental Drivers

Collinearity among variables was assessed by calculating pair-wise Pearson's correlation coefficients separately 
for Africa (Figure S5 in Supporting Information S1) and Australia (Figure S6 in Supporting Information S1). 
Correlation coefficients higher than 0.65 or lower than −0.65 indicated high collinearity, adopting the threshold 
value frequently utilized in the literature (Monjarás-Vega et al., 2020; Oliveira et al., 2014). Uncorrelated varia-
bles (P_Amp and P_SI in Africa, P_Var and P_SI in Australia) were directly included in the PCA, while the rest 
had to undergo additional exploratory analysis based on bivariate generalized additive models (GAMs, Wood & 
Wood, 2017). GAMs were generated to investigate the relationship between each of the remaining highly corre-
lated variables and the three fire metrics in Africa (Figure S7 in Supporting Information S1) and Australia (Figure 
S8 in Supporting Information S1). Among sets of highly correlated variables, the one which is a better predictor 
for a majority of the fire metrics (i.e., higher explained deviance, reported in the upper right corner of each plot 
in Figures S7 and S8 in Supporting Information S1) was selected as follows.

In Africa:

•  Tree was selected from the highly correlated set {Tree, Biomass, P} because it was a better predictor of BA 
and FRP.

•  AET was selected from {PET, DEF, AET} because it was a better predictor for BA and FRP.
•  Temp was selected from {Temp, T_Max} because it was a better predictor for FSize, and substantially equiv-

alent for BA and FRP.
•  P_Var was included because it correlates highly only with P, which was excluded as detailed above.
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In Australia:

•  P_Amp was selected from {P_Amp, P, AET, PET, DEF, T_Amp} because it was a better predictor of BA and 
FSize.

•  Temp was selected from {Temp, T_Max} because it was a better predictor of all three fire metrics.
•  Tree was selected from {Tree, Biomass} because it was a better predictor of all three fire metrics.

The two steps of the exploratory analysis resulted in the selection of six environmental drivers in Africa (Temp, 
P_Amp, P_SI, P_Var, Tree, AET) and five in Australia (Temp, P_Amp, P_SI, P_Var, Tree).

3.2. Fire Region Mapping

PCA and clustering were performed separately for Africa and Australia since these two continents vary in terms of 
vegetation cover and level of anthropogenic pressure, which can alter the climate-fire relationships among conti-
nents (Archibald et al., 2010; Lehmann et al., 2014; Stevens et al., 2017). To ensure that all variables have equal 
weights, all data were normalized by rescaling the values between 0 and 1 and centered (Mardia et al., 1979). 

Figure 1. Flowchart illustrating the main processing steps; following standard conventions, rectangles are used for datasets, ovals for processes and diamonds for 
Boolean operators. The dotted rectangles encompass the three main processing steps described in details in Sections 3.1 through 3.3.
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Clustering was based on a Euclidean distance matrix computed using all PCs with eigenvalue >1 (Girden, 2010). 
Grid cells were incrementally merged into clusters using Ward's linkage method (Ward,  1963), according to 
which the distance between two clusters is equivalent to an increase of the sum of squares when they are being 
merged. The number of clusters was determined by inspecting the dendrograms. Following the recommendations 
by Wilks (2005), moving from the bottom to the top of the dendrogram, at each step, the distance between merged 
clusters is computed as defined above, and the merging process is stopped one step before the distance between 
merged clusters jumps markedly (i.e., before a discontinuity in the derivative of the distance). The selection of the 
number of clusters was a compromise between the highest separation between clusters based on the dendrograms 
and selecting enough clusters to represent the full range of environmental gradients at the continental level.

Due to the continuous nature of environmental variables, clustering of grid cells can lead to a noisy output 
map, making it difficult to interpret or use for ecological applications. For that reason, once each 0.5° grid cell 
was assigned to a cluster, the results were aggregated at the ecoregion scale using a majority overlap criterion. 
The Olson et al. (2001) ecoregions, defined as large areas of relatively uniform climate and vegetation that are 
refuge to a specific set of species and ecological communities, were used because of commonalities in vegetation 
that mediate climate-fire relationships (Abatzoglou, Williams, et al., 2018; Pausas & Fernández-Muñoz, 2012; 
Zubkova et al., 2019).

3.3. Evaluation of the Fire Regions

To evaluate the separability of the proposed fire regions in terms of fire activity, we compared fire metrics within 
each region using the Wilcoxon signed-rank test. The Wilcoxon test is a nonparametric test that can be used to 
test the significance of the differences between the means of two samples (Wilcoxon, 1945). Fire regions were 
analyzed within each continent and between continents to test if similar environmental conditions lead to similar 
fire activity in different geographical regions.

Additionally, within each fire region, we tested if different levels of anthropogenic pressure led to significant vari-
ation in fire activity, thus separating environmental drivers of fire from human influences to evaluate human driv-
ers within different climate niches. We ran the PCA and clustering procedure on the three anthropogenic pressure 
variables for each continent, resulting in continental maps of clusters homogeneous in terms of anthropogenic 
pressure. We then stratified each region by the level of anthropogenic pressure to verify whether it significantly 
affected the fire metrics.

4. Results
4.1. Fire Regions

The PCA analysis was performed to reduce the dimensionality of the set of environmental drivers; in both conti-
nents, only the first three PCs had eigenvalues >1, and were therefore used in the subsequent hierarchical cluster-
ing. Like Faivre et al. (2011), we cut the dendrograms into several clusters of increasingly complex biophysical 
patterns. A simple pattern would lead to 5 clusters in Africa and 4 clusters in Australia, while a more complex 
pattern included 9 clusters in Africa and 8 in Australia (Figure S9 in Supporting Information S1). Beyond this, 
the distance between clusters was negligible, meaning similarities between clusters were drastically increasing; 
therefore, further splitting of the data was not justified.

Figure 2 shows the fire regions as scatterplots in the space of the first three PCs, whereas Figure 3a shows the 
gridded fire region map at 0.5° resolution, which were subsequently aggregated at the ecoregion scale through 
the application of a majority filter (Figure 3b).

To allow for unambiguous labeling of the fire regions, each is identified by a three-digit numerical code, where 
the first digit indicates the realm (1 - Australasian, 3 - Afrotropical), the second digit indicates the label from the 
first split (simple pattern), which was based on the mean value of the first PC, ranked from high to low, while 
the third digit is based on the further split (Figure S9 in Supporting Information S1). It follows that regions 
whose  codes have the same first two digits share more similarities than regions with entirely different codes. For 
example, the environmental space between clusters 321, 322, and 323 is more similar than between clusters 321 
and 311. The digit “1” in the numeric code “321” means that cluster 321 had the highest mean value of the first 
PC compared to clusters 322 and 323 (Figures 2 and 3).
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Figure 2. Position of the fire regions within the space of the environmental variables in Africa (left) and Australia (right). Biplots show the ordination of 0.5° cells 
along the first and second principal components (PC) (top row) and first and third PC (bottom row); cell symbols indicate the fire regions (i.e., the cluster each cell is 
assigned to).
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In both continents, the first two PCs were driven by the Tree, P_Amp, and Temp gradient (Figure 2). In Africa, 
the primary gradient was related to P_Var, P_Amp, and Tree, splitting the continent into regions with low P_Var 
and high Tree (Figure 3, region 311–323, P_Var = 0.1 and Tree = 32.5% on average) and high P_Var and low 
Tree (regions 331–351, P_Var = 0.2, Tree = 6.6%). The second PC was driven by Temp and AET that further 
split high P_Var regions into hot, Sahel (region 331–332, Temp = 27.8 °C), medium, Horn of Africa (region 
351, Temp = 25.0  °C), and cold, deserts and xeric shrublands (region 341–342, Temp = 20.7  °C), while the 
third PC was related to P_SI that helped to differentiate between tropical forest (region 311, P_SI = 0.7) and 
savannas (regions 321–323, P_SI = 0.9). In Australia, Temp was a primary gradient that split the continent into 
hot (region 111–123, Temp = 24.2°C) and cold (region 131–141, Temp = 17.8°C) regions, where the second 
PC attributed to P_Amp and Tree split hot regions further into high P_Amp, tropical savannas (region 111–112, 
P_Amp = 192 mm) and low, deserts and xeric shrublands (region 121–123, P_Amp = 48 mm) and cold regions 
into high Tree, temperate forest (region 141, Tree = 48.4%) and low, Mediterranean forest and temperate grass-
lands (region 131–132, Tree = 18.3%).

Figure 3. Spatial distribution of major fire regions in Africa and Australia. (a) Gridded fire region map at 0.5° resolution; (b) final fire region map, obtained by 
aggregating the gridded data at the ecoregions level; (c) human impact level map, (black vectors) overlaid with the fire regions maps. White color represented 
unburnable surfaces and areas where the vegetation is too sparse to sustain any substantial fire activity.
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4.2. Evaluation of the Fire Regions

4.2.1. Across-Region Variations in Fire Activity

The overall relationship between BA and the environmental drivers was similar in the two continents: the highest 
BA was detected in regions with strong precipitation seasonality (i.e., P_Amp, and P_SI), while regions with high 
Tree had the lowest BA (Figures 4 and 5). Similarly, the results of the GAMs (Figures S7 and S8 in Supporting 
Information S1) showed that both rainfall seasonality variables had a positive relationship with BA, albeit not for 
the entire range of the two variables. In particular, BA increases with P_Amp until it reaches about 200 mm, and 
with P_SI > 0.5.

In Africa, BA initially increases with Tree and P, reaching a maximum at approximately Tree  =  20% or 
P  =  1,200  mm, and then decreases, confirming the intermediate fire–productivity hypothesis (Pausas & 
Ribeiro, 2013; van der Werf et al., 2008) and would indicate that in xeric environments P—which drives the 
availability of fuel—is the main fire limiting factor (i.e., water-limited systems). In wetter environments, however, 
fuel is not a limiting factor, but precipitation seasonality (measured by P_Amp), with the presence of distinct wet 
and dry seasons, is (i.e., energy-limited systems). High P and low P_Amp create favorable conditions for tree 
growth, and at Tree >60% we observed a drastic reduction of BA in Africa (Figure S7 in Supporting Informa-
tion S1). We note that although P was not explicitly used in the fire region clustering due to strong collinearity 
with Tree (Africa) and P_Amp (Australia), changes in fire activity as a function of the P gradients were reported 
to acknowledge that—on the physical level—P remains one of the key drivers of fire activity in the tropics.

In Australia, the relationship between BA and P shows a similar pattern but significantly less pronounced, with 
a much wider spread of the confidence interval at high P values (>1500 mm). This pattern reflects the fact that, 
in Australia, some of the areas with the highest P also have high P_Amp and consequently experience high fire 
activity (i.e., Northern Australia). In contrast, other areas have high P and low P_Amp, and therefore experience 
low BA (i.e., the South East of the continent and Tasmania).

Large fires in both continents were observed within areas with similar environmental conditions. In general, FSize 
tends to increase with P_SI and P_Var and decreases with Tree (Figures 4 and 5) and P > 1000 mm in Australia 
and P > 1500 mm in Africa (Figures S7 and S8 in Supporting Information S1). However, for P < 400 mm, 
FSize has a strong positive relationship with P, which can be explained by the low biomass accumulation rate 
in dry regions. Infrequent years with higher than usual rainfall can promote large fires in the following year 
(Bradstock, 2010), specifically in Australia, where P_Var and FSize had a positive linear relationship. The single 
most important predictor of FSize in Africa was P_SI, whereas Temp explained the most variation in FSize distri-
bution in Australia. A drastic increase in the size of fires was observed when Temp >19°C.

In contrast, the relationship between FRP and the environmental variables was distinctly different in Africa and 
Australia. In Australia, similar to Murphy et al. (2013), interrelations between FRP and BA were identified. Very 
intense fires were observed under a variety of climate conditions, with the exception of regions experiencing high 
P_Amp, where in general high BA and low FRP were observed (Figure 5). In contrast, this relationship was not 
observed in Africa: intense fires could be found in most regions except tropical forests (i.e., the region with low 
P_SI and high Tree). Arguably, the lack of a long, distinct season with conditions conducive to fire in the African 
tropical forests limits not only BA but also FRP. Additionally, a strong positive relationship was observed between 
FRP and P at the lower end of the precipitation gradient (P < 1000 mm). P_Var and P_SI showed the opposite 
pattern; while P_Var negatively affects FRP, P_SI promoted intense fires in Africa.

It should be noticed that, while the overall relationships between fire metrics and environmental variables were 
similar, the domain of the environmental space of fire regions differs between the two continents, as evident when 
comparing the range of the x-axes of the plots in Figure S7 in Supporting Information S1 with those of Figure S8 
in Supporting Information S1. Likewise, fire regions were significantly different in terms of summary values of 
at least one of the fire metrics, as confirmed by Wilcoxon signed-rank tests (Table 2). As an illustrative example, 
we compared fire activity and environmental space of Tropical Savannas and Deserts and Xeric Shrublands, 
that is, two biomes with significant fire activity both in Africa and in Australia. Australian Tropical Savannas 
support lower tree cover (Tree = 8.5% vs. Tree = 20% in Africa), receive a lower annual rainfall (P = 976 and 
1,208 mm in Australia and Africa, respectively) and experience higher precipitation variability (P_Var = 0.26 
and 0.11 respectively). And while Tropical Savannas in the two continents experience similarly very large annual 
burned area (BA = 25% in regions 321–331 and 111–112), FRP and especially FSize were significantly higher 
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Figure 4. Characterization of the fire activity metrics in Africa within the space of the environmental variables: mean annual burned area (top), Fire size (middle), 
fire radiative power (bottom). Biplots show the ordination of 0.5° cells along the first and second principal components (PC) (left) and first and third PC (right). The 
points are plotted with a color scale indicating the value of the fire metric within the 0.5° cell, quantized by quintiles of the distribution of the metric values within the 
continent.
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Figure 5. Characterization of the fire activity metrics in Australia within the space of the environmental variables: mean annual burned area (top), Fire size (middle), 
fire radiative power (bottom). Biplots show the ordination of 0.5° cells along the first and second principal components (PC) (left) and first and third PC (right). The 
points are plotted with a color scale indicating the value of the fire metric within the 0.5° cell, quantized by quintiles of the distribution of the metric values within the 
continent.
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in Australia (Table 2). Differences in FRP and FSize were even more drastic between regions of the Desert and 
Xeric Shrublands biome (342 and 121–131), where fire activity in Australia is up to three times higher in terms 
of FSize and up to 1.5 times in terms of FRP. As in Tropical Savannas, Deserts and Xeric Shrublands in Australia 
occupy a portion of the environmental space with lower P (324 mm), higher P_Var (0.32), and higher Temp 
(22.7°C) compared to Africa (355 mm, 0.27, and 21.4°C, respectively).

4.2.2. Within-Region Anthropogenic Influence on Fire Activity

While the primary goal of this work was to delineate broad fire regions based on similar environmental conditions 
that shape fire activity, a simplistic analysis of human factors was included to demonstrate the potential use of the 
defined fire regions to study more local drivers of fire activity.

Overall, the analysis of the effect of anthropogenic pressure on fire activity metrics within the fire regions (Figure 2c, 
Table 3) confirmed the findings of previous studies: except for tropical forests where fire metrics increased with 
human pressure—consistent with fires in this region being tied with deforestation (Hoffmann et al., 2003)—we 
observed a negative relationship between fire activity and anthropogenic pressure (Archibald, 2016; Le Page 
et al., 2010; van Langevelde et al., 2003). Interestingly, our analysis showed that humans could exacerbate or 
minimize the variation in fire activity between two continents. For example, the drastic difference in FSize 
between the Deserts and Xeric Shrublands regions in Africa and Australia could be attributed to differences in 
the magnitude of anthropogenic pressure between the two continents since areas with a negligible level of human 
impact within the two fire regions show similar FSize (regions 342 and 122). In contrast, the difference in average 
BA in Tropical Savannas regions between two continents, which are overall small, substantially increased when 

Africa

ID Description BA [%] Fire size [km 2] FRP [MW]

311 R-S-C 2.80 * 18.67 * 44.65 *

321 F-S-I 19.86 24.90 * 76.66 *

322 F-S-I 25.19 27.91 * 66.35 *

323 F-S-I 19.72 31.77 61.27 *

331 F-I-I 28.21 46.37 69.69 *

332 I-I-I 8.35 59.89 a 74.28

341 I-I-I 11.15 a 45.72 83.14

342 R-L-H 3.97 204.14 a 121.39 *

351 R-S-I 1.08 * 29.41 70.99 *

Australia

ID Description BA [%] Fire Size [km 2] FRP [MW]

111 F-L-I 22.33 a 364.71 a 107.33 *

112 F-I-C 33.48 * 114.88 a 79.02 *

121 I-L-H 7.86 * 771.53 * 195.48 *

122 R-L-I 2.00 388.32 * 171.56 *

123 R-I-C 3.42 a 99.24 * 88.76 *

131 R-I-I 1.02 * 174.09 * 175.14 *

132 R-S-I 0.92 23.61 * 152.12 *

141 R-I-H 1.73 75.02 * 208.31 *

Note. BA: mean annual burned area; FSize: 95th percentile of the fire size distribution; FRP: 95th percentile of fire radiative power distribution. Abbreviations in the 
description: F—frequent, R—rare (in terms of BA), L—large, S—small (in terms of FSize), H—hot, C—cold (in terms of FRP), I—intermediate (for all fire metrics), 
similar to Archibald et al. (2013). It should be noted that high and low values of fire metrics were relative to each continent.
 aStatistically different compared to other regions within the continent.  *Statistically different compared to other regions between the continents, p < 0.05.

Table 2 
Summary Values of the Three Fire Metrics, Calculated for Each Fire Region in Africa and Australia
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only low human pressure areas were considered. In other words, in the absence of humans, Tropical Savannas 
in Africa support more frequent fires than in Australia. It is also important to state that while, based on previous 
research, it was expected that humans drastically alter fire activity, our analysis showed that the magnitude of 
human influences varied substantially across biomes. For instance, both regions 132 (mostly Mediterranean 
and Temperate Forests in Southwestern and Southeastern Australia) and 341 (mostly Montane Grassland and 
Tropical Savannas, both North and South of the Equator in Africa) encompass mostly human-managed lands and 
therefore experience a very high level of anthropogenic pressure (Figure S2 in Supporting Information S1). The 
high proportion of croplands and high livestock density has, however, a different impact on fire metrics in the two 
regions. High levels of human pressure substantially decreased BA in region 341 but had a low impact on Fsize 
and FRP, whereas, in region 132, high human pressure had a more severe impact on FSize and FRP than BA.

5. Discussion
5.1. Correspondence Between Fire Regions, Biomes and Climate Zones

The spatial distribution of the fire regions (Figure 3) shares some similarities with the terrestrial biomes defined 
by Olson et  al.  (2001) and the Köpper-Geiger climate classification (KG, Kottek et  al.,  2006), which is not 
surprising since climate data are one of the main inputs of all three maps. However, biomes were delineated based 
on similar climate and vegetation cover that support the distribution of selected groups of plants and animals. 
In contrast, fire regions were defined as areas homogeneous in terms of environmental conditions that promote 
fuel accumulation and desiccation (i.e., fire potential). As a result, a number of dissimilarities can be recognized 

Africa

Region

BA, % Fire size, km 2 FRP, MW

Low human 
impact

Medium human 
impact

High human 
impact

Low human 
impact

Medium human 
impact

High human 
impact

Low human 
impact

Medium human 
impact

High human 
impact

311 2.06 5.76 5.52 16.53 27.26 19.32 44.00 44.02 58.71

321 21.07 10.95 – 25.33 16.96 – 79.53 46.46 –

322 27.96 13.88 16.72 31.77 18.68 18.03 66.79 63.12 62.06

323 24.29 17.48 5.61 33.27 30.05 26.52 60.22 66.42 33.62

331 42.95 23.04 8.07 62.68 33.70 23.61 71.87 64.70 55.42

332 7.77 10.11 3.56 77.06 51.73 37.57 83.14 62.01 50.96

341 20.98 8.19 2.71 65.47 26.62 30.70 87.19 79.19 59.81

342 3.91 4.50 – 386.94 27.05 – 125.66 103.36 –

351 0.74 2.72 0.71 36.06 20.82 32.20 72.26 66.36 82.69

Australia

Region

BA, % Fire Size, km 2 FRP, MW

Low human impact Medium/High human impact Low human impact Medium/High human impact Low human impact
Medium/High 
human impact

111 22.99 1.09 403.77 111.22 107.38 81.69

112 33.48 – 114.88 – 79.02 –

121 7.97 1.11 786.30 51.83 195.77 157.08

122 2.00 – 388.32 – 171.56 –

123 4.99 2.22 201.14 45.29 92.17 85.79

131 1.21 0.50 610.28 10.73 199.39 90.75

132 1.13 0.87 615.13 17.39 294.62 119.10

141 2.50 1.49 146.24 44.35 242.15 195.17

Table 3 
Mean Value of the Three Fire Metrics, Computed for Each Fire Region in Africa and Australia, Stratified by Human Pressure Level
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between the spatial distribution of biomes and fire regions. First, similar to the KG map, the tropical savannas 
biome was split into several regions to represent the full spectrum of biophysical conditions and fire activity. 
While the P in Australia has a distinct Northeast to Southwest gradient (evident in the KG map), the gradient of 
BA follows the North-South direction and FSize the West-East one. The patterns are captured by the fire regions: 
the Tropical Savannas biome is split into a Northern tropical region (112) with the highest BA, a Northern arid 
region (111) with high BA and high FSize, and an Eastern region (123) with drastically lower BA. The Tropi-
cal Savannas biome in Africa was split into two regions North of the equator (323, 331) and two South of the 
equator (321, 322). This split is driven by the spatial pattern of Tree, which negatively affects BA, as reported 
above. Additionally, while the Sahel and the Horn of Africa also belong to the Tropical Savannas biome, they 
experience different climates. Consequently, they were separated into region 332 (Sahel) with the lowest Tree in 
Africa, lower BA and higher FSize compared to other tropical savannas regions (321–331), and region 351 (Horn 
of Africa), which had the lowest P_SI in both continents and the lowest BA in Africa.

In Australia, the Deserts and Xeric Shrublands biome is also assigned to a single climatic zone by KG, but it 
experiences a large gradient of BA and FSize. This biome was split into three fire regions, roughly along the 
North-South direction, corresponding to progressively higher FSize and lower BA. The Northern region (121) 
had the largest FSize, whereas regions 122 and 131 had significantly lower FSize and BA. FRP remained high in 
all arid regions.

In Africa, as in KG, the Montane Grasslands and Southern part of the Tropical Savannas biomes were merged in 
a single region (fire region 341) with an intermediate level of fire activity between the rest of the Tropical Savan-
nas and the fire regions encompassing Deserts and Xeric Shrublands. Meanwhile in Australia, Mediterranean 
and Temperate Forests showed similar fire activity, the lowest BA and FSize, possible due to high population 
density and a high proportion of human-managed land (Figure S2 in Supporting Information S1), which showed 
to substantially decrease the rate of fire spread (Archibald, 2016; Archibald et al., 2012; Le Page et al., 2010; 
Mouillot & Field, 2005). Therefore, both biomes were assigned to one fire region (132) except for Tasmania and 
a small southwest part of the mainland with a temperate, dry and warm summer climate (region 141) that showed 
higher FSize and FRP than in region 132.

5.2. Comparison of the Fire Regions to Published Fire Regimes Maps

Despite the importance of fire regimes delineation, only two global fire regimes maps are currently available in 
the peer revied literature. Chuvieco et al. (2008) defined eight fire regimes based on levels of fire frequency and 
its inter-and intra-annual variability, whereas Archibald et al. (2013) used the clustering of BA, FSize, and FRP 
to define five key global fire regimes. Similar to our results, both studies distinguished some variation in fire 
activity between the Tropical Savannas in Africa and Australia (Figure S12 in Supporting Information S1). In 
the Desert and Xeric Shrublands biome, however, the two global fire regimes map were not able to distinguish 
drastic differences in fire activity between Africa and Australia, which we found to vary significantly in terms 
of FSize and FRP. Additionally, Archibald et al. (2013) identified similar fire regimes in temperate grasslands 
in Australia and tropical forests in Africa, while our results indicate that those two regions differ significantly, 
especially in terms of FRP.

In short, previous efforts to map global fire regimes often failed to differentiate between regions with significant 
variation in one or more fire-regime metrics and combined several biomes with different environmental condi-
tions (e.g., fuel-limited and energy-limited) into one fire regime. One possible explanation is the a priori choice 
of the number of global fire regimes, which might be insufficient to represent the variety of fire activity between 
and within continents. For example, in contrast to our findings, Archibald et al. (2013) failed to observe any clear 
relationship between delineated fire regimes and climate variables or biomes.

It is also important to acknowledge that the opposite of our fire regions, previously mentioned maps of fire 
regimes were restricted by the length of the fire record, which was limited to 6 years for Chuvieco et al. (2008) 
and 14 years for Archibald et al. (2013). The lack of fire detections in places with moderate to low-frequency fire 
return intervals impeded assigning a fire regime to many parts of the world, which can be misinterpreted as an 
absence of fire activity. Therefore, existing fire regime maps based on a few fire metrics cannot be utilized for 
their main purpose, such as understanding what processes shape current fire activity.
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To incorporate fire-climate relationships into fire regime mapping, similar to our approach, several previous 
studies analyzed changes in fire metrics across environmental gradients. However, by selecting one rather than a 
set of environmental variables, those studies could not recognize the variety of fire regimes across biomes. For 
example, Hantson et al. (2017) detected a drastic reduction in FSize in the tropics once P reaches 550 m due to 
an increase in tree cover and concluded that dry tropical regions experience larger, hotter, and more rare fires 
compared to wet tropics. While overall, it is a fair statement, we showed that FSize and FRP are not always higher 
in dry tropics compared to the wet (e.g., the Horn of Africa vs. tropical savannas), and not all wet tropical regions 
experience higher BA than dry regions (e.g., tropical forest vs. Sahel or desert and xeric shrublands in Africa). 
Additionally, based on our GAMs, we found that P threshold for FSize reduction was much higher, 1000 mm in 
Australia and 1500 mm in Africa (Figures S7 and S8 in Supporting Information S1).

Recognizing a variety of fire regimes within one continent and their strong connection with moisture, 
Russell-Smith et  al.  (2007) defined 10 regions in Australia using seasonal rainfall distribution. We similarly 
found that P_Amp and P_SI were important predictors of fire activity in Australia, especially for BA, and a certain 
resemblance between our fire regions and Russell-Smith's rainfall classes can be recognized. However, by includ-
ing other environmental variables in our classification, we were able to define regions statistically different not 
only in terms of BA but also FSize and FRP. We found that FSize and FRP do not follow a precipitation gradient 
as closely as BA; therefore, rainfall seasonality alone cannot explain the complexity of the fire phenomenon and 
account for multiple processes that drive fire (Bradstock, 2010).

We finish our comparison by acknowledging the work of Murphy et al. (2013) that described in great detail broad 
fire regimes in Australia also using environmental controls of fire activity, such as major fuel types and climatic 
domains, as a baseline. The comparison between the fire regions and Murphy's map revealed that our regions 
somewhat captured the overall spatial pattern of fire frequency and intensity in Australia. However, instead of 
using statistical analysis to delineate fire regions, Murphy et al. (2013) used experts' opinions and local literature. 
While we do not dispute that local knowledge can enhance our understanding of the spatial distribution of histor-
ical and modern fire activity, it can also bring a certain degree of subjectivity, bias, and a lack of reproducibility 
to the method.

5.3. Limitations of the Study

Some limitations must be considered in interpreting the results of the proposed approach. First, while the poten-
tial drivers of fire activity used in this study were identified through a thorough literature review, not all potential 
fire climatic and environmental drivers were considered. Other variables such as wind and fire-weather indices 
that can reflect short-term dry spells can potentially explain some discrepancies between climate domains and 
fire metrics (Abatzoglou & Kolden, 2013; Archibald et al., 2009). Moreover, while elevation, aspect, slope, soil 
properties, fuel types, ignitions, and fire management practices can have a profound effect on different fire char-
acteristics (Archibald et al., 2009; Russell-Smith et al., 2007; Stevens et al., 2017), their impact might be too local 
for the scope of this paper. It is also worth mentioning that while only a few variables (6 in Africa, 5 in Australia) 
were used in the PCA and clustering analysis, strong collinearity between many of the environmental variables 
might preclude the identification of the single most important driver—caution is therefore recommended if the 
results of this study were to be used in physically-based fire models.

Second, this study is limited by the quality of currently available remotely sensed data. In particular, the MODIS 
fire products do not capture small, low-intensity fires (Boschetti et al., 2019; Kumar et al., 2011), which could, 
in some fire regions, introduce biases in the fire activity metrics. This issue is particularly relevant in frequently 
burned environments and within highly managed lands (Laris, 2005), thus fire-data limitations could affect the 
results of the anthropogenic pressure analysis, spuriously restricting it to bigger fires. Recent studies by Roy 
et al.  (2019) and Ramo et al.  (2021) demonstrated the severe underestimation of small fires in Africa by the 
MCD64A1 product, especially within cropland and savannas. Additionally, coarse resolution land cover products 
fail to detect small agricultural fields, which are prevalent in Africa (Inglada et al., 2015; Midekisa et al., 2017) 
and can be used as fire breaks, increasing landscape fragmentation. Meanwhile, precipitation datasets are less 
accurate in regions with inadequate rain gauge network (Dinku et al., 2014; Toté et al., 2015).

Third, while remotely sensed data is the only source for global analysis to capture spatial and temporal patterns of 
fire activity (Benali et al., 2017), there is no agreement on the minimum fire record length required to adequately 
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capture the inter-annual variability in fire activity, especially in places with moderate to low-frequency fire return 
interval (Bowman et al., 2009; Daniau et al., 2012; Krawchuk & Moritz, 2014). And only a limited number of 
fire metrics can be currently estimated from remote-sensed data. Some essential components of the fire regime 
concept, for example, fire type and severity, were omitted in this study.

Fourth, some aspects of the statistical analysis add uncertainty. For instance, the selection of the number of clus-
ters through inspection of the dendrogram is rather arbitrary; a lower or higher number of fire regions might more 
preferable depending on the scale of analysis and on the intended use of the ecoregions. We note, however, that 
the hierarchical clustering provides a straightforward aggregation of the fire regions: using the first two digits of 
the fire region ID results in a rigorously defined coarser map. Additionally, there are issues with the separability 
of some of the clusters: Figure 2 shows a certain degree of overlap between clusters and a number of cells close 
to the decision boundary.

Finally, the aggregation of 0.5° cells into ecoregions also resulted in the loss of some local-scale features. This 
is evident in Ethiopia, a highly diverse country that encompasses 11 different ecoregions, where cells belonging 
to 7 different fire regions were primarily merged into two major regions (341, 351) with a few cells merged into 
regions 311, 331, and 332.

These limitations notwithstanding, the methods presented in this paper are general ones. We would advocate that, 
for local studies, smaller than a country level, a user can adopt the proposed approach to define more refine fire 
regions using data from local weather stations, field data, and higher resolution imagery to avoid some of the 
biases and limitations of coarser resolution data.

6. Conclusions
This study proposed a new approach for mapping the diversity of potential fire activity at the continental level, 
based on key processes that control fuel accumulation, desiccation, and fire propagation. One of the advantages 
of the proposed method is that the fire regions were identified through the statistical analysis of climate and 
environmental variables reflecting broad biophysical processes rather than using observed fire activity metrics 
as input data – unlike previous studies that have used a limited set of metrics estimated over short time periods 
(e.g., Archibald et al., 2013; Chuvieco et al., 2008; Le Page et al., 2008). Furthermore, the analysis was conducted 
separately for each continent, without the implicit assumption that the same “fire regime” exists in different conti-
nents. Reflecting the heterogeneity of fire characteristics within biomes and between continents, the proposed 
methods resulted in 9 and 8 regions in Africa and Australia, with distinct climate, vegetation, and fire activity.

Fire activity metrics computed from the 2002–2019 record of the global MODIS satellite fire record were used 
to characterize the fire activity level of each region, thus evaluating the effectiveness of the proposed fire region 
map. We found that different environmental variables act as key limiting factors for fire activity in Africa and 
Australia. Consistently with the current fire ecology literature (Chuvieco et al., 2021; Lehmann et al., 2014), 
temperature was found to be a more important predictor of fire activity (especially for the average annual burned 
area and the fire size) in Australia than in Africa, whereas precipitation and the highly correlated tree cover were 
the primary predictors of BA and fire intensity (FRP) in Africa.

We believe that delineated fire regions can be used not only as a spatial unit for calculating fire statistics but also 
to study how changes in fire drivers could reshape fire activity in the future and to analyze anthropogenic drivers 
of fire within regions homogeneous in terms of climate controls. In this study, we demonstrated that humans' 
potential to transform a different aspect of fire activity varied within climate space; therefore, any attempt to 
generalize the human-fire relationship at the continental or global scale will severely oversimplify the role of 
humans in shaping modern fire activity. Ultimately, while our understanding of broad-scale fire-climate relation-
ships is improving, more research is needed to evaluate the impacts of socio-economic factors on those relation-
ships, particularly in tropics where climate- or human-related changes in fire activity could also drive long-term 
changes in vegetation composition since fire is one of the main controls of grass-forest coexistence (Lehmann 
et al., 2014; Sankaran et al., 2005).
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Data Availability Statement
The observational datasets used in this study are freely available. MCD64A1: https://lpdaac.usgs.gov/products/
mcd64a1v006/. MCD14ML: https://firms.modaps.eosdis.nasa.gov/download/. FLDAS: https://disc.gsfc.nasa. 
gov/datasets?keywords=FLDAS%26page=1. TERRACLIMATE: http://www.climatologylab.org/terraclimate. 
html. CCI LC: http://maps.elie.ucl.ac.be/CCI/viewer/download.php. MOD44B: https://modis.gsfc.nasa.gov/
data/dataprod/mod44.php. Global Aboveground and Belowground Biomass Carbon Density: https://doi.org/10. 
3334/ORNLDAAC/1763. Ecoregions: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-
world. Livestock: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIVQ75. Popula-
tion density: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4. All statistical analyses were performed in 
R 4.1.2 (R Core Team, 2017). The R mgcv package (v.1.8.38; Wood & Wood, 2017) was used for GAM (function 
gam), and the stats package (v.1.4.2; R Core Team, 2017) was used for PCA and clustering (functions prcomp and 
hclust, respectively). The maps of fire regions and R code from this study can be obtained from Zenodo (https://
doi.org/10.5281/zenodo.6646835).
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