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Abstract
Coastal cities like Shenzhen are confronting escalating flood risks under the combined impact of
climate change and rapid urbanization, especially the tropical cyclones (TC)-induced flood.
Incorporating the impact of climate change and urbanization on the flood, this study constructed a
new TC-induced flood model on western Shenzhen embedded with a unique statistical approach.
Based on extensive historical data and machine learning techniques, the temporal characteristics
and changes of flooding were revealed. The results reveal an increase in the frequency of
TC-induced floods between 1964–2022, especially after the 1990s, which is attributed to a decrease
in the distance of the location of the maximum intensity of TCs (observed within an 800 km range
of the study area) relative to the land, averaging a reduction of 11.4 km per decade. This shift
towards land is likely due to changes in the locations of TC genesis. Furthermore, the ‘rainfall sea
level’ threshold for western Shenzhen was accordingly derived from the results of modelling, which
would enable decision-makers to quickly assess TC-induced flood risks. The study’s proposed
methods offer alternative approaches for predicting TC-induced floods in regions where the
gathering of hydro-meteorological data is challenging or where economic and technological
resources are limited.

1. Introduction

Coastal regions have historically been hubs of civil-
ization, trade, and culture. However, they are also
at the forefront of the challenges brought by climate
change. Within a 100 km radius of coastlines, there
are about 38% of the global population living in this
region and 80% of flood-related fatalities worldwide
between 1975 and 2016 occurred as well (Barbier
2015, Hu et al 2018). Coastal cities are more vulner-
able to extreme hydrometeorological events (IPCC
2021). Floods induced by tropical cyclones (TC) are
of particular concern that the accompanying intense
storms and storm surges always have catastrophic
effects on the living and production of the urban. The

combined impacts of sea level rise, land subsidence,
and rapid urbanizationwould exacerbate these effects
and lead to unprecedented socioeconomic loss (Liu
et al 2022).

Located on the coast of the South China Sea,
Shenzhen, a typical coastal megacity, epitomizes the
challenges faced by coastal regions globally. Since
its establishment in 1979, Shenzhen has undergone
urbanization at an unprecedented pace. In 40 years,
its built-up area has expanded 35 times, growing
from 27 km2 in 1979–946 km2 in 2017 (Yu et al
2019). This rapid urbanization has brought about
transformative land-use changes that may intensify
the flood risks coupled with the rise of sea levels.
In recent years, Shenzhen has experienced multiple
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severe floods triggered by TCs. On 2nd and 8th
September 2023, Super Typhoon Saola and Typhoon
Haikui, hit the city in quick succession within a week
and triggered shutdowns. The downpours brought by
Typhoon Haikui broke seven historical records of the
city since 1952. These records include the maximum
rainfall over 2 h (195.8 mm), 3 h (246.8 mm), 6 h
(349.7 mm), 12 h (465.5 mm), 24 h (557.8 mm), 48 h
(613.8 mm), and 72 h (614.6 mm), causing massive
flooding to Shenzhen (Xinhua 2023). Earlier super
typhoons, Hato andMangkhut in 2017 and 2018, had
similarly devastating effects, highlighting the urgent
need for effective TC-flood forecasting (Shenzhen
Climate Bulletin 2018).

In response, the local government departments in
Shenzhen have conducted a rigorous assessment of
urban flood thresholds based on historical disaster
data, survey insights, and other pertinent sources.
This widely adopted assessment has informed the cre-
ation of a comprehensive table, enabled the estim-
ation of specific rainfall thresholds at the subdis-
trict scale, and facilitated the evaluation of flood
probabilities (RiskWarning forMajorMeteorological
Hazards in Shenzhen 2022). Machine learning (ML)
has recently advanced urban flood forecasting, with
studies like Zhang et al (2023), Ke et al (2020) apply-
ing ML algorithms to develop models for Shenzhen.
However, these studies predominantly relied on rain-
fall data as the only input variable, potentially ignor-
ing the complexity of TCs-induced floods.

Hydrological models are reliable tools for TC-
induced flood study, offering robust support for a
deeper understanding and prediction of flood events.
However, most of the previous studies primarily
focused on individual TC flood events, with a rel-
ative lack of research on long-term variations and
trends of TC floods (Lee et al 2020, Yang et al 2021).
In recent years, some researchers have indeed begun
exploring this field (Joyce et al 2017, Zhang andNajafi
2020), Qiang et al (2021) also employed the SWMM
model to simulate flood maps for the western coastal
areas of Shenzhen under various combinations of
rainfall and storm surges. Regrettably, these studies
mainly concentrated on the long-term assessments of
the impacts of sea-level rise on flooding, overlook-
ing the potential effects brought about by urbaniz-
ation. Moreover, as pointed out by Marsooli et al
(2019), unlike simulations for rainfall-induced flood-
ing events, TC-induced study needs to consider the
variations in TC characteristics affected by climate
change, an aspect that remains inadequately stud-
ied. As the establishment and operation of hydrolo-
gicalmodels often demand substantial computational
resources andworkforce, especially in acquiring high-
quality hydro-meteorological and geographical data
for studying flooding scenarios in larger regions, the
application of hydrological models on urban floods is
therefore limited.

Considering the aforementioned issues and chal-
lenges, the objectives of this study are to: (1) develop
a TC-induced flood forecasting model that com-
bines machine learning techniques with statistical
approaches; (2) identify and analyse historical poten-
tial TC-induced flood events in Shenzhen, examine
changes in their frequency and discern possible nat-
ural causes.

2. Study area & data sources

Shenzhen, a coastal metropolis, is located in the south
of Guangdong Province, China, with a geographic
location between 113◦43′–114◦38′ E and 22◦24′–
22◦52′ N. The city borders the Pearl River Estuary to
the west andHongKong to the south (figure 1). There
are around five TCs affecting Shenzhen on average
every year. This study narrows down to the western
portion due to the long-term sea level observations
available at the ChiWan site, representing Shenzhen’s
western sea area. Focusing on four out of nine river
basins that flow into this area, namelyMaozhouRiver,
Pearl River Estuary, Shenzhen Bay, and Shenzhen
River basins, this region holds hydrological signi-
ficance and embodies Shenzhen’s core urban zones,
marked as the most vulnerable in Shenzhen by prior
research (Sarica et al 2021).

The observational 24-h rainfall data (00:00–
24:00 UTC) and daily maximum sea level data
(astronomical surge + storm surge) are collected
from the Shenzhen Hydrological Yearbook (1964–
2019) and Shenzhen Meteorological Bureau (2020–
2022). The locations of the stations are shown in
figure 1(b). Given the lack of data on storm surges
in Shenzhen, the dates of maximum storm surges
and sea levels of Hong Kong (North Point/Quarry
Bay station) are used here, which are obtained from
Tropical Cyclone Yearbook provided by Hong Kong
Observatory and Chan (1983). Historical TC flood
disaster information (2001–2022) is provided by the
Shenzhen Meteorological Bureau and the Shenzhen
Water Affairs Bureau. Additionally, records of seven
TC-induced flood events (IDA, 1964; RUBY, 1964;
ELLEN, 1983; GORDON, 1989; BECKY, 1993; SAM,
1999; YORK, 1999) are from the Collection of Storm
Surge Disasters Historical Data in China 1949–2009
(Yu et al 2015), Shenzhen flood control plan revision
and river improvement plan: Revision report of flood
control plan (2014–2020). The land-use data origin-
ate from the National Earth System Science Data
Centre. The historical length of the drainage network
data is collected from the official website of Shenzhen
Water Authority and Peng et al (1999). The track and
intensity data of TCs are obtained from the Western
North Pacific tropical cyclone database (Ying et al
2014, Lu et al 2021). Themonthly sea surface temper-
ature (SST) data is from theMetOfficeHadley Centre
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Figure 1. Study area and locations of rain and tide gauges.

SST dataset, and the monthly wind data is from the
NCEP/NCAR (Reanalysis-1) dataset.

3. Methods

This study consists of four steps as shown in figure 2.

3.1. Input data pre-processing
3.1.1. Maximum sea level & maximum daily rainfall
The daily maximum rainfall and maximum sea level
occurring within ±1 d of the maximum storm surge
event are collected. In total, 340 TCs are studied in
this research. Note that the sea level data of Typhoon
Viola (1964) in Shenzhen is missing, it is estimated
by the fitting function of the remaining 339 TCs’ sea
level data at Shenzhen and Hong Kong (figure A1).
The maximum sea level of Typhoon Viola (1964) in
Shenzhen was calculated to be about 1.4 m. Detailed
information can be found in the appendix.

3.1.2. Flood risk composite index (FRCI)
To address the potential influences of climate change
and urbanization on flooding events over time, a
FRCI is constructed. The process involves:

1. Establishment of Flood Sensitivity Factors: (1)
Based on land-use data, the ratio of impervi-
ous area to green area (forest, grassland, farm-
land), and water area for each year in the study
area were calculated (figure A2). Since Shenzhen
was established in 1979, with minimal land-use

changes before that, data from 1980 was used for
the period between 1964 and 1979. (2) Historical
drainage network length served as a measure of
urban drainage capacity. Similarly, since the con-
struction of Shenzhen’s drainage system began in
1980 and was minimal before that (Chen 2014).
(3) Accounting for the effects of sea-level rise and
land subsidence, a relative sea-level rise meas-
urement was constructed. The average rate of
sea level rise near the study area is approxim-
ately 3.5 mm yr−1 (Zou et al 2021, Ministry of
Natural Resources 2023), and the mean subsid-
ence rate is about 2.5 mm yr−1 (Ma et al 2019,
Wang et al 2012b). The sum of the two rates
is 6 mm yr−1, consistent with the findings of
Nicholls et al (2021). However, the rate of land
subsidence in Shenzhen before 1986 tended to
be zero (Huang et al 2001), and considering that
Shenzhen entered a period of rapid construction
and development after 1990 (Ng 2003, Du 2020),
the influence of urban construction on land sub-
sidence gradually became apparent. Therefore, for
the period from 1964 to 1990, only sea-level rise
was considered as a factor, while both sea-level rise
and ground subsidence were included from 1990
onwards.

2. Normalization: To eliminate the influence of
scales, Min-Max Scaling was applied to the four
factors (figure A3).

3. Linear Relationship Analysis: To reduce redund-
ancy among factors, the Variance Inflation Factor
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Figure 2. The framework of the study.

(VIF) was utilized to assess the linear relationships
between factors. It was found that the VIF values
for ‘Relative SLR,’ ‘Impervious-to-Green Ratio,’
and ‘Drainage capacity’ are significantly greater
than 10, indicating potential serious multicollin-
earity issues.

4. Dimensionality Reduction: principal component
analysis was employed to reduce the dimension-
ality of these factors, and the first principal com-
ponent, which explained approximately 91% of
the variance (figure A4)), was selected as the FRCI
as shown in figure A4).

3.2. Model building & application
Machine learning is used to extract the main fea-
tures of massive data samples through algorithms,
and make predictions according to the learned rules.
The process of building a machine learning model
includes structural construction of data,model build-
ing, and validation. Flood prediction is usually an
application of binary classification (e.g. ‘true and
false’, ‘yes and no’), which aims to distinguish flood
events from non-flood events based on hydrological
variables (Ke et al 2020, Schmidt et al 2020, Chang
et al 2022). However, this study aims to establish a
model to predict the likelihood of flood occurrence,
providing a continuous probability value instead of a
binary classification.

Considering the limited sample size, several com-
monly used regression models were considered,
encompassing both linear models (logistic regres-
sion (LR), support vector regression (SVR), and ridge
regression (RR)) and nonlinear models (random
forest regression (RFR), gradient boosting regres-
sion (GBR), and regression tree (RT)). To determ-
ine the optimal model, five-fold cross-validation was

employed, and the performance metrics of each
model, including Accuracy, area under the curve
(AUC), Recall, Precision, F1 Score and matthews cor-
relation coefficient (MCC).

The decision boundary delineates the input fea-
ture space, providing insight into a model’s decision-
making process. By comparing these boundaries, the
model that best captures the inherent data patterns
is chosen for accurate flood predictions. Therefore,
the decision boundaries of both optimal linear and
non-linear models were analysed to select the best-fit
model for this study. Finally, this three-dimensional
best-fit model was used to estimate the TC flood
threshold for 2022 and to calculate the probability of
flooding for all TC events.

3.3. Attribution analysis methods
Standard linear regression and correlation analysis
were employed in this study, and the significance
levels are assessed using the standard two-tailed
Student’s t-test. In addition, the Mann-Kendall (M-
K) test was used to test for abrupt changes. This
method is widely applied to climate data and is highly
effective in verifying a transition from a relatively
stable state to another state (Xing et al 2018). More
details about this method can be found in Mann
(1945).

4. Results

4.1. Best-fit model for TC-induced flood prediction
The historic disaster information of 123 TCs was
collected, with 51 experiencing floods and 72 not.
Modelling was conducted on these TCs, with the
target variable being the presence of floods, and the
features including rainfall, sea level, and FRCI. The

4
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Table 1. Performance metrics of machine learning models.

Linear model Nonlinear model

LR SVR RR RFR GBR RT

Accuracy 0.92 0.84 0.85 0.89 0.89 0.89
AUC 0.98 0.97 0.98 0.96 0.94 0.95
Recall 0.92 0.61 0.65 0.84 0.86 0.86
Precision 0.89 1 1 0.90 0.86 0.86
F1 Score 0.90 0.76 0.78 0.87 0.86 0.86
MCC 0.83 0.69 0.72 0.78 0.77 0.77

Figure 3. Three-dimensional decision boundaries for logistic regression model (a) and random forest regression model (b).

results of the five-fold cross-validation for six ML
models are shown in table 1. It can be observed that
among the linear models, LR slightly lags behind
SVR and RR in accuracy but performs the best in
other metrics. Among the three non-linear models,
RFR has slightly higher AUC and MCC compared to
the others. In summary, LR is considered the top-
performing linear model, while RFR is considered the
top-performing non-linear model.

The decision boundaries of the LR and RFRmod-
els are illustrated in figure 3. The RFRmodel provides
underestimated predictions for events featuring high
sea levels and low rainfall. However, this discrepancy
contradicts the reality that the topographic elevation
remains constant in the study area. When the sea
level exceeds the coastal elevation, flooding events
are bound to occur even in the absence of rainfall.
In comparison, the decision boundary provided by
the LR model aligns more closely with reality and
offers better interpretability. Therefore, the LRmodel
is selected to be the best-fit model to predict TC-
induced flood events.

4.2. TC-induced flood threshold for 2022
To determine the ‘Rainfall-Sea level’ flood threshold
for western Shenzhen, the FRCI for the year 2022
was held constant. Subsequently, 10 000 sets of

data points, comprising rainfall and sea levels, were
randomly generated. These data points were subjec-
ted to the established model to assess their respective
flood risk levels, categorized as high, moderate, and
low, as illustrated in figure 4.

To better align with practical emergency require-
ments and enhance the effectiveness of flood warn-
ings, the decision boundary with a probability of
0.3 is taken as the TC-induced flood threshold for
Shenzhen in the present. The threshold line can be
presented as equation (1):

F(x) =−0.0265x+ 2.2, (1)

where x is the maximum daily rainfall.

4.3. Changes of TC-induced flood events and
attribution analysis
Utilizing the established best-fit model, predictions
were carried out for the entirety of the 59 year data-
set encompassing all TC events. Consequently, the
probability of flood occurrence for each TC event was
computed. Subsequently, TC events with flood prob-
abilities⩾0.3 were identified as potential TC-induced
flood events. 102 potential flooding events have been
selected from the total of 340 TCs.

Between 1964 and 2022, the frequency of poten-
tial TC-induced flooding events showed a significant
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Figure 4. Flooding threshold for 2022 derived from Logistic Regression model.

Figure 5. Frequency changes of the potential flood events. The dashed line represents the mean over the 59 years. Red and blue
lines stand for the linear trends.

increasing trend (figure 5). In particular, it is obvi-
ous from the figure that the frequency of occurrence
has been higher since the 1990s. However, during the
same period, there is no statistically significant trend
for TCs occurring in the south china sea (SCS), or
coming within 800 km of the study area, or bringing
storm surges to the region (figure A5). Therefore, the
following sections consider possible reasons for this
increasing trend.

Changes in TC characteristics can directly lead to
changes in rainfall and storm surge, and thus affect
the frequency of TC-induced flooding. Therefore, we
conducted a series of statistical analyses for all 340
TCs during the 59 years. The results show that the
time-series analysis of the number of TCs entering
various distance ranges of the study area exhibits no
discernible trend (figure A6), nor do changes in trans-
lational speed between 1964–2022, analysed both in
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Figure 6. (a) M-K mutation test for the annual mean distance between the TC maximum intensity location within 800 km and
the study area. (b) Changes of the annual mean distance. (c) Distribution of the maximum intensity locations.

terms of the mean overwater translation speed across
different distance ranges of the study area and the
translation speed pre and post-landfall (figures A7
and A8). Furthermore, a significant decrease at a
99.9% confidence level in the annualmeanmaximum
intensity of TCs within 800 km during the period
of 1964–2022 was observed (figures A9 and A10).
It seems that none of these factors—the unchanged
counts and translational speeds of TCs, alongwith the
weakened intensity, lead to an increase in TC flooding
events.

Observations indicate that TC motion has
migrated coastward, poleward and westward due
to tropical expansion as well as the higher relat-
ive SST along the coast (Daloz and Camargo 2017,
Sun et al 2018, 2019, Knutson et al 2021, Wang and
Toumi 2021). In this study, we found no significant
change in the distribution of the closest locations
to Shenzhen before TCs landed on the mainland
(figure A11). However, the annual mean distance
between the TC maximum intensity location and
the study area decreases significantly (99.9% confid-
ence level) at a rate of approximately 11.4 km per
decade (figure 6(b)). The maximum intensity here
refers to the maximum intensity within 800 km from
the study area rather than the maximum intensity
over the whole duration of the TC lifetime. To fur-
ther analyse the trend changes of the annual mean
distance, the M-K test method was implemented in
this study (figure 6(a)). According to the intersec-
tion point position of the UF curve and the UB curve
in figure 4(a), it can be inferred that the decrease
in the distance appears to be a bifurcation point,
which occurs around 1992. The annual mean dis-
tance between 1964–1991 is about 417 km, while that
is about 358 km between 1992–2022, a difference
of 59 km. Figure 4(c) shows the distribution of the

maximum intensity points in these two periods, the
mean positions of the two periods are at 20.15◦ N,
114.68◦ E (triangle) and 20.72◦N, 114.01◦ E (square),
respectively, and the distance between them is about
94 km. Overall, the location of the maximum intens-
ity of the TC is close to the Shenzhen/coast during
1964–2022, a finding that is consistent with the res-
ults derived byWang andToumi in 2022. These results
suggest that the increased frequency of TC-induced
floods is likely related to a decrease in the distance
between the location of the TC maximum intensity
and the land.

Wang and Toumi (2022) suggest that the primary
driver of the shift in maximum intensity position
could be the zonal changes in the environmental
steering flow. However, in this study, there is no
noticeable difference in the environmental steer-
ing flow near Shenzhen between the two periods
(figure A12). We noticed significant differences in
SSTs between the two periods, which are associated
with the location of TC genesis. After comparison,
we found that the TC genesis locations affecting
Shenzhen were closer to the coast from 1992 to 2022,
with a mean position that shifted north-westward by
about 782 km compared to the mean genesis position
during 1964–1991 (figure 7). In addition, the propor-
tion of TC generated in the SCS; (0◦–30◦ N, 106◦ E–
120◦ E) increased from 21% to 34%. The identifica-
tion of the SCS region here follows the partitioning
methods previously reported (Song et al 2019, Wang
et al 2012a). The observed north-westward migra-
tion of TC genesis locations may be associated with a
‘La Niña-like’ intensification of the zonal SST gradi-
ent across the equatorial Pacific. As detailed by Lee
et al (2022), this La Niña-like/zonally asymmetric
convection, is manifested in an enhanced SST gradi-
ent, a strengthened Walker circulation, and altered

7



Environ. Res. Lett. 18 (2023) 124040 J Liu et al

Figure 7. Distribution of the genesis positions of TCs.

thermocline depths, culminating in warmer waters in
the western Pacific. Consequently, this leads to the
genesis of TCs further northwest, nearer to the Asian
continent. Despite rising SSTs, TC genesis locations
have shifted northwest without an increase in fre-
quency (figure A5). Gao et al (2022) attribute this
to subsurface ocean cooling in the tropical central-
north Pacific during El Niño, which canmodulate the
ocean’s response to atmospheric conditions, poten-
tially offsetting the effects of sea surface warming
on TC frequency. In conclusion, we believe that the
decrease in the distance of TC maximum intensity to
land in figure 6 may be mainly caused by the changes
in the location of TC generation.

5. Conclusion & discussion

To summarise, this study employed statistical meth-
ods to predict flood events based on a rich, lengthy,
decades-spanning historical dataset, combined with
machine learning techniques, to delve deeper into
the variations and characteristics of TC-induced flood
events. The following conclusions have been drawn:

First, the LRmodel is the best-fit model to predict
TC-induced flood events, utilizing rainfall, sea level,
and flood risk composite index as characteristic vari-
ables. The model gives the current flood thresholds
for Shenzhen. The threshold line was determined to
be: F(x) = −0.0265x + 2.2. According to Nie et al
(2016), when the sea level of Chiwan is higher than
1.4mduring a TC event, seawater intrusionwill occur
in western Shenzhen. However, the corresponding
rainfall has not been mentioned in their research.
Furthermore, Zhou et al (2017) reported that between
2012–2014, the maximum 24-hour precipitation of
rainstorm-induced disasters in Shenzhen occurred in
the range of 46–631 mm, which is mainly concen-
trated in the 100–300 mm range. Again, the effect
of sea level was not considered in their study. The
threshold of this study indicates that flooding may

occur if the sea level exceeds 2.2 m without precip-
itation, or if 24-hour rainfall exceeds 83 mm when
the sea level is 0. Combined with the results of pre-
vious studies, it can be concluded that the calcu-
lated TC-induced flood threshold in our study has
a higher degree of confidence than those in the lit-
erature. Indeed, the validation of our threshold still
requires simulation through hydrological models or
observational data from future TC events. In addi-
tion, the daily rainfall data does not adequately rep-
resent the intensity of rainfall during various times of
the day. If the rainfall is gentle and within the capacity
of the urban drainage system, the cumulative 24-hour
rainfall can surpass the threshold line without caus-
ing flooding. Therefore, the intensity of TC-induced
flooding needs to be further investigated in the future.

Second, the frequency of TC-induced floods was
found to increase at an annual average rate of 1.3%,
which is considered to be related to a decrease in the
distance of TC maximum intensity, observed within
an 800 km range of the study area, relative to the land.
The location of the maximum intensity of the TC
relative to the Shenzhen/coast decreased at a rate of
approximately 11.4 km per decade, with an apparent
bifurcation point in 1992. This shift is most likely due
to the changes in the location of TC genesis, which
is believed to be mainly driven by a ‘La Niña-like’
intensification of the zonal SST gradients across the
equatorial Pacific under global warming. Since there
was rapid urbanization that began in the 1990s, the
increase in flood frequency may be due to urbaniza-
tion effect enhancing TC rainfall or causing changes
to urban hydrological processes. Additionally, the
northward shift of the maximum intensity location
could heighten storm surge and might also be influ-
enced by urban land cover, which in turn could amp-
lify precipitation. All these issues are planned to be
investigated using numerical models in future work
to provide a more comprehensive understanding and
address the complex interactions between urbaniza-
tion and TC-induced floods.
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Despite the inherent uncertainties in models and
data, flood predictions based on the ‘rainfall-sea level’
threshold derived by the machine learning approach
in this study will enable decision-makers to quickly
evaluate the flood risk associated with a TC within a
short period. The findings of this study hold signi-
ficant implications for Shenzhen’s effective response
to TC-induced flooding. Furthermore, the method of
establishing the flood model in this paper provides
a valuable approach for areas constrained by hydro-
logical data acquisition or limited by economic and
technological conditions.
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Appendix

Figure A1. Comparison of sea level datasets of Shenzhen and Hong Kong. The reference level used in Hong Kong is the ‘Chart
Datum’, while the one used in Shenzhen is the ‘Pearl River Datum’.

Figure A2. Land cover classification maps of study area from 1980 to 2020.
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Figure A3. Changes in Flood Sensitivity Factors over time (normalized data).

Figure A4. (a) Cumulative explained variance by principal components. (b) Change in the first principal component over time.
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Figure A5. Frequency changes of TC events.

Figure A6. Numbers of TCs in different ranges from the study area.
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Figure A7. Changes of the mean translation speed of TCs before landfall occurring within different range of study area.

Figure A8. The annual mean translation speed before and after landfall.
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Figure A9. The annual mean maximum intensity of TCs.

Figure A10. Frequency changes of different intensity categories’ TCs occurring within 800 km of study area. (a) Tropical
Depression (TD, 10.8–17.1 m s−1) and Tropical Storm (TS,17.2–24.4 m s−1); (b)⩾Severe Tropical Storm (STS,
24.5–32.6 m s−1); (c)⩾Typhoon (TY, 32.7–41.4 m s−1); (d)⩾Severe Typhoon (STY, 41.5–50.9 m s−1); (e)⩾Super Typhoon
(SuperTY,⩾51.0 m s−1). The intensity categories used here are according to the Chinese National Standard for Grade of Tropical
Cyclones (Ying et al 2014, Lu et al 2021).
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Figure A11. The distribution of the closest locations to Shenzhen before TCs landed on the mainland.

Figure A12. The difference in the summer mean (June–October) environmental steering flow (500 hpa level) and SST between
the period of 1964–1991 and 1992–2022.
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