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Hotspot Analysis of Vegetation Fires and Intensity
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Chris Justice

Abstract—In this study, we quantify vegetation fire activity in
India using the MODerate resolution Imaging Spectroradiometer
(MODIS) active fire datasets. We assessed different fire regime
attributes, i.e., fire frequency, seasonality, intensity and the type
of vegetation burnt in diverse geographical regions. MODIS data
from 2002–2010 revealed an average of 63696 fire counts per year
with the highest during 2009. Fire season in India extends from
October to June with the peak during March. The K-means algo-
rithm identified hotspot regions of fire clusters in diverse regions of
India. We examined fire radiative power (FRP) data in the hotspot
regions to address which fires burn intensively than others based
on the vegetation type. We first assessed the best statistical fit dis-
tributions for the FRP data using the probability density functions
(PDFs) and ranked them based on Kolmogorov-Smirnov statistic.
We then described the fire intensities using empirical cumulative
distribution functions (CDFs). Results suggest diverse pdfs for
the FRP data that included Burr, Dagum, Johnson as well as
Pearson distribution and they varied based on the vegetation type
burnt. Analysis from empirical CDFs suggested relatively high fire
intensity for closed broadleaved evergreen/ semi-deciduous forests
than the other vegetation types. Although, annual sum of FRP for
agricultural fires was less than the closed broadleaved evergreen
forests, the values were higher than the mosaic vegetation category
and broadleaved deciduous forests. These results on fire hotspots
and FRP will be useful to address the impact of vegetation fires on
air pollution and climate in India.

Index Terms— Fires, FRP, India, vegetation.

I. INTRODUCTION

V EGETATION fires are spread in the diverse biomes in
both ‘natural’ and managed ecosystems [1]–[3]. Fire may

profoundly alter the structure of the landscape [4], [5] and can
affect ecological processes and function [6]–[8]. In addition,
fires can cause complete destruction of vegetation cover and
can impact plant composition, hydrological processes and rates
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of soil erosion [9], [10]. Further, repeated burning can also
modify the nutrient balance of soils, especially through the
process of pyro-denitrification [11]. Outdoor fires, such as from
wildfires and agricultural residue burning can emit particulate
matter (PM) and other pollutants into the atmosphere impacting
the air quality at both local and regional scales [11]–[14].
Quantifying the impact of fires on the environment requires
information at multiple spatial scales.
One of the important concepts useful for addressing fire char-

acteristics at a wide variety of scales is the fire regime. The
fire regime of an area is defined by its fire type, fire intensity,
severity, fire size, seasonality, spatial pattern, etc. [15], [16],
[52], [53]. Use of vegetation fire statistics including records of
ignition sources and the number of fire occurrences, is an effec-
tual method to quantify the temporal and spatial characteristics
of fire regimes [17], [18]. A fire regime is the result of many
interactions among physical and biophysical variables and can
impact vegetation characteristics, species distribution, nutrient
cycling, and ecosystem function [19], [20]. A fire regime is also
dynamic due to the influences of climate conditions and human
intervention [21]. Although purely natural fire regimes may not
exist in the modern world, understanding of these fire regimes
in time and space is still of great interest in both theory and prac-
tice [22].
Data on the fire regimes in the Indian region is scarce. It

is estimated that nearly 3.73 Mha are burnt annually in India
[23]. The fire season in India is severe during the dry season
(March–May) and fire frequencies and intensities vary based
on the vegetation type, climate conditions and socioeconomic
factors. According to a State of the Forest Report [24], about
50% of the forested areas in India are fire prone. Apart from
these general estimates, information on the number of fire oc-
currences, seasonality, hotspot regions of fire, type of vegeta-
tion burnt is not readily available. Understanding the impact
of fires on vegetation and climate requires detailed knowledge
about where fires occur, spatial and geographic gradients. For
the same, satellite remote sensing technology with its synoptic
coverage, multi-temporal, multi-spectral and repetitive capabil-
ities provides robust information.
In this study, we used MODerate resolution Imaging Spec-

troradiometer (MODIS) active fire data to address the following
questions pertinent to vegetation fires, in particular, their spatial
distribution and fire intensity in India. How are the fire events
distributed across different geographical regions? Are there any
specific regions and ecosystems where fires cluster? Where are
the hotspots? When is the peak fire season? What is the typical
fire radiative power (FRP) of these fires? Are there any differ-
ences in FRP and annual sum of FRP released based on the vege-
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tation type? Which statistical distribution most appropriately fit
the FRP data, useful for modeling fire behavior?
In addition, we also tested two different hypotheses relating

to annual sum of FRP (A-FRP). 1) Of the different forest
types, A-FRP released from the closed broadleaved deciduous
forests will be much higher compared to the closed to open
broadleaved evergreen forests. The premise for this hypothesis
is the broadleaved deciduous forests in India are characterized
by warmer climates year-round and have long dry seasons
which can last several months compared to evergreen forests.
Thus, deciduous forests are highly fire prone and were hypoth-
esized to have higher A-FRP values than the evergreen forests.
The second hypothesis we tested pertains to agricultural residue
burning. We hypothesized that 2) due to the lower fuel loads
in agricultural systems compared to forests, the agricultural
residue fires will have lower A-FRP values than the forest
fires. From the questions and hypothesis addressed, the results
from this study were expected to provide robust information on
where fires occur, hotspot areas, fire-vegetation characteristics,
fire intensity and the statistical nature of the fire intensity data
useful for addressing fire management and mitigation options.

II. DATASETS AND METHODOLOGY

A. Active Fires, Fire Radiative Power (FRP), Annual Sum
of FRP

We used the MODIS daily active fire product
(MCD14ML) for spatial depiction, monthly FRP
(MOD14CMH/MYD14CMH) product for characterizing
the fire intensities in India. The FRP data are an aggregated
daily datasets for individual months. The real-time active
fire data are processed through MODAPS (MODIS Adaptive
Processing System) and also available through FIRMS (Fire
Information for Resource Management System) [25]. The
MODIS two sun synchronous, polar orbiting satellites pass
over the equator at approximately 10:30 am/pm (Terra) and
1:30 pm/am (Aqua) with a revisit time of 1 to 2 days. The
data collected by the sensor is processed by MODAPS using
the enhanced contextual fire detection algorithm [26] into the
Collection 5 Active fire product. For this study, we analyzed the
annual fires from 2002–2010 and specifically focused on 2010
fires for answering specific questions, when both the Terra and
Aqua satellites were simultaneously collecting data. The fire
data are at 1 km nominal spatial resolution at nadir, however,
under ideal conditions flaming fires as small as 50 can be
detected (http://maps.geog.umd.edu/firms/faq.htm#size).
FRP is the rate of fire energy released per unit time, measured

in megawatts [27], [28]. FRE is FRP integrated over time and
space and described in units of mega joules (MJ). The MODIS
algorithm for FRP is calculated as the relationship between
the brightness temperature of fire and background pixels in the
middle infrared (band center near 4 m). It is given as [27], [28]

(1)

where FRP is the rate of radiative energy emitted per pixel,
is the constant derived

from the simulations, (Kelvin) is the radiative bright-
ness temperature of the fire component, (Kelvin) is the

neighboring non-fire background component, and MIR refers to
themiddle infrared wavelength, typically 4 m. In this study, we
utilized the collection 5 Terra and Aqua monthly climate mod-
eling grid datasets (MOD14CMH/MYD14CMH) [30] that rep-
resent cloud and over pass corrected fire pixels data along with
the mean FRP data.

B. Vegetation Type

We used the land use/cover product from MERIS data at a
300 m resolution for characterizing the vegetation types [31]
(Fig. 1). The land cover product is derived by classification
of a time series of MERIS full resolution mosaics from De-
cember 2004–June 2006. Its 22 land cover global classes are de-
fined with the United Nations Land Cover Classification System
(LCCS). We used this product due to its high spatial resolu-
tion (300 m) compared to the other global land cover products.
Specifically, the active fires from MODIS were overlaid on the
MERIS vegetation map to analyze the fire regimes (frequency,
extent, seasonality, type of vegetation burnt).

C. Cluster Analysis

For the MODIS fire data corresponding to the latest years
(2010, 2011), we performed a cluster analysis to identify
hotspots of fires in different geographical locations and veg-
etation types. Clustering is loosely defined as “the process
of collecting objects into groups whose members are similar
in some way” [32]. The goal of clustering is thus to deter-
mine the intrinsic grouping in a set of unlabelled data [33].
K-means clustering is one of the popular unsupervised learning
algorithms [33]–[35]. An important characteristic of K-means
approach is the use of centroids for grouping observations. The
technique is based upon the multivariate analysis of variance
in the evaluation of homogeneity among entities [36]. The
k-means approach is represented as

(2)

(3)

(4)

where ‘i’ is the index of observations; is the attribute weight
of observation (number of fires at a given location on our case);

;
‘I’ and cluster ‘k’; ‘I’ and
cluster ‘k; and

if observation i is assigned in cluster k
otherwise

(5)

The K-means clustering algorithm partitions a given data set
through a certain number of clusters fixed a priori. Starting
from a random initialization, the algorithm iterates two simple
phases: takes each point belonging to a given data set and as-
sociates it with the nearest centroid and then, when no point is
pending, re-computes the new centroids as the barycenters of
groups resulting from the previous step [34], [37]. After these
new centroids, new association phases are performed iteratively
between the same data set points and the nearest new centroid.
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Fig. 1. MERIS derived vegetation map of India.

As a result of this loop, the centroids change their location
step by step until no more changes occur, i.e., the centroids do
not move anymore [38], [39]. We restricted our clusters to eight
to depict major biomass burning regions. Further, to identify the
cluster locations, we used the standard deviation ellipses [39].
We typically used one standard deviation, i.e., each ellipse cov-
ering more than 50% of the clustered fire events. Previously, the
K-means clustering algorithm is used in a wide variety of ap-
plications including data mining and data discovery [54], data
compression and vector quantization [55] and pattern recogni-
tion and pattern classification [56]. More specifically, the al-
gorithm has been used in marketing research [57], clustering
urban crime patterns [58], disease transmission patterns [59],
clustering gene expression [60], profiling road accident hotspots
[61], etc. In this study we used it for identifying fire clusters
during 2010 and 2011 over India using the MODIS dataset.

D. Descriptive Statistics

A 4 4 grid with a cell size of 0.5 0.5 degrees (total of
) is overlaid on each of the K-mean fire cluster

ellipses (Fig. 3) and the underlying FRP values have been ex-
tracted (2010, 2011). We used a variety of descriptive statistics
to assess the FRP values in the clusters which included number
of fire counts, FRP minimum, maximum, range, 1st quartile,
median, 3rd quartile, sum, mean, variance, standard deviation,
coefficient of variation, skewness, mean absolute deviation and

median absolute deviation. In addition, we also evaluated the
monthly FRP for the fire clusters for relative comparison.

E. FRP Distribution Fitting and Comparison

Distribution fitting is useful when the statistical origin and
properties of a given data are unknown. Several distribution
types are available to identify the correct origin of distribution.
Fire clusters in our case were identified in a wide variety of
geographical regions and ecosystem types. The underlying
causative factors of fires in these clusters may be different,
thus the associated FRP values. Quantifying the underlying
statistical distributions of the FRP data may provide useful
information on fire behavior and modeling. For a constant
grid size and fire cluster data described earlier, using the
2010 sampled data, we assessed for the best statistical fit
distributional forms using the probability density functions,
cumulative distribution functions (CDFs) and the Quantile
plots. We used Kolmogorov Smirnov (K-S) goodness of fit
statistic to assess the relative effectiveness of the individual
distributions and identifying the best-fit for the fire-cluster FRP
data [40]. The K-S test is based on the largest vertical differ-
ence between F(x), the theoretical distribution function, and

. The KS statistic
for a given cumulative distribution function (F(x) is given as

(6)
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Fig. 2. (a) Spatial pattern in MODIS derived active fires for March 2010. (b) Fire seasonality (2010) with the peak fire activity during March; (c) Trends in fire
activity for different years with the highest fire counts in 2009.

Fig. 3. Fire hotspots as identified by K-means clustering algorithm (2010, 2011).

where is the set of distances. K-S compares the empir-
ical cumulative distribution function of the sample data with the
distribution expected if the data were normal. If the observed
difference is sufficiently large, the test will reject the null hy-
pothesis of population normality. If the p-value of these test
is less than the chosen alpha level (0.01 level in this study),

null hypothesis is rejected and concluded that the population is
non-normal. After fitting the best probability distribution func-
tion, a Quantile-Quantile (Q-Q) plot was used to detect shifts in
the location of FRP values, scale, symmetry and the presence of
outliers. The Q-Q plot will be approximately linear if the spec-
ified theoretical distribution is the correct model. Further, em-



228 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 1, FEBRUARY 2013

TABLE I
MODIS FIRE COUNTS (2010) AGGREGATED BASED ON MERIS (300 m) VEGETATION MAP

TABLE II
HOTSPOT REGIONS OF FIRE CLUSTERS AS IDENTIFIED BY K-MEANS ALGORITHM

pirical distribution plots for each of the cluster data were used
to assess the FRP differences.

III. RESULTS AND DISCUSSION

Spatial variation in fire counts based on MODIS active fire
data for the year 2010 for India is shown in Fig. 2(a), monthly
variations in Fig. 2(b) and yearly variations in Fig. 2(c). Of
the different years, 2009 recorded the highest number of fires
followed by 2007, 2010 and others. An average of 63696 fire
counts per year is recorded in India. Fire season in India extends
from October to June during which more than 70% of total fires
are recorded with the peak during March with 41.2% of fires,
April (19.7%), May (6.03%), etc. (Fig. 2(b)). Further, MODIS
Aqua captured 73.3% of the fires relative to MODIS Terra with
26.6%, suggesting that most of the fires occur during the af-
ternoon. Fire counts aggregated based on the MERIS (300 m)

derived vegetation map (Fig. 1) for the year 2010 for the en-
tire India is given in Table I. While aggregating the fire counts,
non-vegetation classes such as regularly flooded areas, urban
areas, bare areas, water bodies and permanent snow and ice cat-
egories were removed. Results suggested that of all the cate-
gories, irrigated croplands has the most fire counts (35%) fol-
lowed by closed to open shrubland category (13.88%), closed
to open broadleaf evergreen or semi-deciduous forest (13.63%),
etc.
Results on the fire-vegetation analysis (Tables I, II) sug-

gests that a variety of vegetation types are burnt in diverse
geographical regions. K-means clustering algorithm was useful
in identifying fire hotspots in diverse geographical regions
(Fig. 3, Table II). The hotspot map generated through K-means
clustering allowed easier interpretation of fire clusters and their
geographical location. There was not much difference in the
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TABLE III
FIRE COUNTS (IN PERCENT) WITHIN A 220 220 sq.km MESH AGGREGATED BASED ON THE MERIS VEGETATION TYPES. THE DOMINANT VEGETATION

TYPES ARE HIGHLIGHTED IN BOLD

2010 versus 2011 fire clusters except that the standard devia-
tion ellipse of cluster 8 during 2011 slightly overlapped with
cluster 6. To capture the fire events and associated FRP values
within a specific vegetation category, we used the MERIS
derived vegetation map. Further, as the clusters identified by
the K-means algorithm were quite different from each other,
to get an unbiased estimate pertaining to the area covered, we
used the same 4 4 grid with a cell size of 0.5 0.5 degrees
as above. Fire counts aggregated based on the vegetation type
information for the individual clusters in percentage is shown
in Table III. We aggregated clusters two and three (Fig. 3) as the
combined area covered by these clusters is less than the selected
grid size for analysis. FRP values associated with the fire inci-
dences strongly depend on the type of fuel material burnt. The
vegetation types identified using the MERIS data suggested
that closed to open broadleaved evergreen or semi-deciduous
forest category and closed to open shrubland category in the
north-east India (cluster-1 and 2–3) had the second highest
fire counts. In these clusters, the vegetation is dominated by
mostly evergreens or semi-deciduous species such asChukrasia
tabularis, Calophyllum polyanthum, Elaeocarpus tectorius,
Litsea lancifolia, Syzigium cuminii, Terminalia myriocarpa,
etc. [62]. The vegetation is also dominated by Bamboo. In
general, these species are not conducive for quick ignition due
to high moisture content. Large amount of fires in the region
are attributed to slash and burn agriculture also known as Jhum,
practiced by the local indigenous people [43], [44]. Jhum is
practiced by the farmers of upland communities of northeast
India and over 400,000 families. The average land holding
under jhum cultivation varies from 0.16–1.3 ha per family.
Mixed cropping with a fallow period of 3–10 years is the main
characteristic of the system. The forests are cleared during late
December/January and the slash is burnt starting February till
May. The peak burning occurs during March (Fig. 4(d), (f)).The
sowing operations are then carried out prior to the onset of
pre-monsoon and monsoon rains.
In contrast to cluster 1, 2–3, fires in cluster 4 (Fig. 4(b)) of

Punjab region are attributed to agricultural residue burning [42].
Of the total cropped areas, rice occupies 37.15% and wheat
occupies 48.76%, and these crops together constitute 85.91%
of grown crops. The other crops such as maize, jowar, cotton,

pulses, vegetables, etc., constitute only 14% of the total cropped
area.In this region, rice is usually grown in the wet summer
season (sowing-May–June and harvesting-October–November)
and wheat in the dry winter season (sowing-November–De-
cember and harvesting-March till May). Farmers mostly use
combines for harvesting the rice and wheat. Although effective,
for most part, combines leave large amount of residues after
harvest. To clear the land for next crop farmers burn the leftover
residues on field (open burning) [41]. The reasons for burning
of agricultural residues in the study area can be summarized
as follows: a) Manual harvesting and threshing of rice/wheat
involve high labor costs; b) Use of Combines allows rapid field
preparation for the next crop, however, it leaves large amount
of residues on field; c) Use of rice residues as cattle feed is not
so common although wheat residues were fed, before combine
harvesters came to practice; d) There is no significant income
generating alternate use of rice residues; e) Burning residues
is a quicker way to clear the fields for the next crop. Thus,
in this region, fires follow a bimodal pattern in a single year
(Fig. 4(b)). Similar trend is shown by fires in the Cluster-5
region (Fig. 4(c)), although with a relatively lower number
of fires, as this region is also a part of Indo-Ganges region
dominated by the agriculture (Table II), mainly Rice-Wheat
cropping system and the crop residue burning [42]. Further,
in this region, the peak burning that occurs during April is
attributed to burning of closed broad leaf deciduous forests
(Table III) [63].
Fires in cluster 6 (Fig. 4(g)) dominated in the Andhra Pradesh

and Orissa border states are mainly attributed to slash and burn
agriculture, locally known as “Podu” [64]. The vegetation
is dominated by closed broad leaved deciduous forest with
the species of Xylia xylocarpa, Terminalia alata, Anogeissus
latifolia, etc. Similar to forested regions of north India, the
region is inhabited by indigenous people who practice “Podu”
cultivation. In this region, peak fires occur during the March,
summer season. Biomass that is clear felled during the late
winter (December) is burnt from January–June. The burning
starts early (January–February) in the lower elevation regions
while late burning (March–June) occurs in the high elevated
regions. Fires in the cluster-7 (Fig. 4(e)) in the Madhya Pradesh
and Maharastra state are attributed to biomass burning of
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Fig. 4. (a) India map with fire clusters in a 220 220 sq.km mesh; (b)–(h) Monthly FRP in different fire clusters; (i) Annual sum of FRP in different fire clusters.
See Table I for vegetation characteristics underlying these fire clusters.

crop residues, mostly Soybean and Wheat. In addition to crop
burning, forest burning is also common due to intentional fires
of tropical deciduous forests. The forests are burnt for clearing
of land for agriculture, facilitating growth of grass for cattle
grazing, in addition to management fires by the local forest de-
partment. Cluster-8 with fires occurring in the different states of
Jharkand, Madhya Pradesh and Uttar Pradesh state (Fig. 4(h))
are attributed to forest as well as agricultural residue burning.
Vegetation analysis (Table II) suggested that in this region, fires
occurred mostly in the mosaic vegetation and mosaic cropland
category.
Our analysis suggests K-means clustering as an effective

technique for identifying fire hotspots from satellite inputs.
The results can be useful for fire management purposes both
in terms of risk evaluation and post-fire impacts on ecosystem
services. Most importantly, the decisions that fire managers
and planners make depend on the spatial characteristics of
fires. For example, pre-suppression decisions are often aimed
at allocation of firefighting funds, personnel and equipment
[49]. The results obtained on fire characteristics, their geo-
graphical locations and vegetation types should help resource
managers and environmental scientists to identify potential
hotspot areas where fire management efforts can be focused.

Further, the spatial patterns of fire clusters can be useful to
address questions relating to causative factors (vegetation
type, meteorology, human impacts) and impacts (air pollution,
vegetation disturbance, etc).
Descriptive statistics for the individual fire clusters for 2010

and 2011 are listed in Table IV. Of the different clusters, cluster
4 that is located in Punjab had the highest number of fire counts
followed by clusters 2–3 and cluster 1 corresponding to north-
east India, followed by cluster 7 (mean for two years) in south
India and others. Large numbers of fire counts in Punjab are
due to agricultural residue burning that occurs in very small
fields. Although the fire counts were highest in cluster 4, several
other attributes for the FRP such as the maximum, mean, sum,
variance, standard deviation, coefficient of variation, skewness,
mean absolute deviation as well as median absolute deviation
of FRP were considerably higher for cluster 2–3 and 1 in north-
east India than cluster 4 and others (Table IV). These differences
suggest variations in the type of evergreen forest biomass burnt
in cluster 2–3 compared to homogenous agricultural biomass
residues burnt from either rice or wheat in cluster 4. Interest-
ingly, the FRP values in cluster 4 corresponding to agricultural
fires had a relatively higher sum of FRP than fire cluster 6 dom-
inated by closed broadleaf deciduous forests. Cluster 7 domi-
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TABLE IV
SUMMARY STATISTICS FOR THE FRP VALUES IN A 220 220 sq.km MESH WITHIN THE FIRE CLUSTERS (2010, 2011)

nated by irrigated croplands and mosaic cropland category in
Central India had higher sum of FRP values than the cluster 6
dominated by the closed broadleaf deciduous forests. FRP den-
sity (per square mile) based on the standard deviation classifica-
tion stretch is shown with a multicolor color ramp (Fig. 5). Stan-
dard deviations are useful in defining where in a distribution the
cut off is between values of different statistical significance. In
Fig. 5, blue indicates standard deviation above the mean and the
more intense colors from green to orange shows increasing de-
viation. White shows standard deviation below the mean. Thus,
the FRP density in the northeast India as well as Punjab had the
highest standard deviation suggesting the relative spread of data
compared to the other regions. The standard deviation stretch

of the FRP values matched the spatial patterns of fire hotspots
identified by the K-means clustering algorithm. However, as the
FRP data was hypothesized to be non-normally distributed, in
addition to standard deviation stretch, we evaluated the other
robust statistical measures to address fire-related questions.
The PDFs fitted for the FRP clusters (2010) along with the

best fit distributions ranked based on the K-S statistic, parameter
and p-values is given in Table V. Probability density function
plots as well as quantile-quantile (Q-Q) plots were shown for
the top-ranked best-fit distributions for the individual FRP fire
clusters in Fig. 6. A distribution that is confined to lie between
two determined values is said to be bounded. A general obser-
vation of the limits of the FRP top-ranked best-fit distributions
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TABLE V
BEST STATISTICAL DISTRIBUTION FITS AND PARAMETERS FOR THE FRP DATA IN DIFFERENT CLUSTERS RANKED AS PER THE KOLMOGOROV-SMIRNOV STATISTIC

Fig. 5. FRP density (per sq.mile) classified using standard deviation stretch.

suggests that all of them pertained to the bounded type. The best
fit FRP distribution for clusters 1, 2–3, 7 and 8 was found to be
a Burr distribution (Fig. 6). The best fit for the FRP data dom-
inated by agricultural fires (cluster 4) was found to be Johnson
SB which is both a left-and right bounded distribution. This is
justified, as agricultural fires showed a clear bi-modal distribu-

tion during summer and winter (Fig. 4(b)) [42]. For cluster 5
dominated by the irrigated croplands and closed broadleaf de-
ciduous forests, Dagum distribution is found to be the best fit for
the FRP data whereas for the FRP data in cluster six dominated
by the broadleaf deciduous forests, Log Pearson-3 distribution
was found to be the best fit (Fig. 6). Log Pearson-3 is similar
to normal distribution, except instead of two parameters, stan-
dard deviation and mean, it also has a skew. When the skew is
small, Log Pearson Type III distribution approximates normal.
The Q-Q plots for the FRP data values plotted against the the-
oretical (fitted) distribution FRP (in MW) quantiles is shown
beside the pdf plots. The Q-Q plots were linear for more than
ninety percent of the data points suggesting that the theoretical
distribution fitted well. These results on the best-fit statistical
distributions of FRP data can be incorporated into simulation
models for quantifying fire behavior, spread and risk. The re-
sults can also be integrated with atmospheric transport models
to assess pollutant behavior and climate impacts in diverse land-
scapes. Statistical distributions are the key for understanding the
behavior of data and FRP showed wide variability based on the
type of fires (eg: agricultural fires versus forest) and geograph-
ical regions. Since research relating to FRP is leading to emis-
sions estimation, our results from statistical distributions of FRP
suggests that regionally fine-tuned models based on FRP statis-
tical distributions and emissions might yield better estimates.
The empirical cumulative distribution function (cdf) plots for

the FRP data corresponding to different fire clusters (2010) is
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Fig. 6. (a)–(g) Probability density distributions fitted for the FRP data(x) in different clusters along with the Q-Q plots.

shown in Fig. 7. These plots were used to assess the relative
strength of FRP values based on percentile data falling below or
above the median. For example, the median FRP value for fire
cluster 1 is 30.9 MW. The 90th percentile shows that 90% of the

FRP values in this cluster are smaller than 153.5MW (Fig. 5(a)).
Similarly, for cluster 4 dominated by agricultural fires, the me-
dian FRPwas 15.3MWand the 90th percentile values fell below
35.7 MW (Fig. 7). Thus, comparison of the above two clusters
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Fig. 6. (Continued).

(1 versus 4) clearly suggests cluster 1 had higher FRP values
compared to cluster 6. In all, comparison of median FRP values
across the plots suggests that FRP was considerably high for 1
and 2–3 clusters corresponding to northeast India compared to
the others. In general for all the data, the mean FRP is greater
than the median, thus the FRP data mostly showed positive
skew towards the right side, however, the difference between
the mean and median is considerably smaller for cluster 4 cor-
responding to agricultural fires than the other clusters. Cluster
6 dominated by the broadleaved deciduous forests had higher
median FRP than the agricultural fires (cluster 4); however, the
values were less than closed to open broadleaved evergreen or
semi-deciduous forests of northeastern India.
FRP data in fire cluster 7 which is dominated by irrigated

croplands and mosaic cropland category showed median and
90th percentile FRP values higher than the other agricultural
fires (cluster four) and closed broadleaved deciduous forests

(cluster six). It is interesting to note that median FRP values in
cluster 8 with the mosaic cropland/vegetation category (30.5%),
rainfed croplands (19.1%) and closed broadleaved deciduous
forests (18.1%) had a relatively higher median FRP than the
cluster 6 dominated by broadleaved deciduous forests category.
Further, the 90th percentile values in this cluster (eight) are also
higher (145.8 MW) than the cluster six. In summary, results
from cdf plots suggest the median FRP values in the following
relative order a) high values for a closed to open broadleaved ev-
ergreen or semi-deciduous forests pertaining to northeast India;
b) medium FRP in mosaic vegetation types (clusters seven and
eight); c) low FRP in closed broadleaved deciduous forest cate-
gory (cluster six); d) very low FRP values in the irrigated crop-
land category (cluster four).
In addition to the cdf plots, we also used annual sum of FRP

(A-FRP) estimates over different fire clusters to assess which
fires burn more intensively over a period of time (Fig. 4(i)).
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Fig. 7. (a)–(g) Empirical cumulative distribution function plots of FRP data in different clusters.

Fire intensities are governed by a variety of factors, the most
important factor being vegetation type. Results clearly suggest
fires in the cluster 2–3 and one dominated by closed broadleaved
evergreen or semi-deciduous forest burn more intensively than

the other vegetation types (Fig. 4(i)). These results were con-
trary to our initial hypothesis that A-FRP released from the
broadleaved deciduous forests will be much higher than the
evergreen forests. Our hypothesis that A-FRP release in trop-
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ical dry deciduous forests will be higher than the evergreen
forests was primarily based on the meteorological factors, i.e.,
the drier the vegetation, the higher the fire proneness and pos-
sibly larger fire counts resulting in higher A-FRP release. How-
ever, the causative factors of fires seem mostly anthropogenic
rather than meteorological factors in India. For example, the
fires in the northeast India (cluster 1, 2–3)mostly pertain to slash
and burn agriculture [43], [44]. Thus cluster 1, and 2–3 had the
highest number of fire counts after agricultural fires (Cluster 4).
These regions are also characterized by the high fuel loads com-
pared to deciduous forests (cluster six) [45], [46]. Thus, higher
fire counts together with higher fuel loads in these clusters con-
tributed to higher A-FRP.
Relating to the second hypothesis that A-FRP released

from agricultural residue burning will be much less than the
forest fires, the results varied based on the forest type. For
example, as hypothesized, the A-FRP for the agricultural
residue fires (cluster 4) was considerably less than the closed
broadleaved evergreen forests (clusters 1, 2–3). However,
A-FRP was considerably higher for agricultural residue fires
(cluster 4), compared to the mosaic vegetation category clus-
ters (7 and 8), and cluster 6 dominated by the broadleaved
deciduous forest category (Fig. 4(i)). Further, monthly vari-
ations in FRP revealed quite different patterns based on the
type of vegetation burnt and geographical regions. Peak FRP
is found to be high during March for clusters 1, 2–3, 8, 6
(Fig. 4(d), (f), (h), (g)), whereas cluster 5 and 7 had the peak
during April (Fig. 4(c), (e)). In contrast to all the other fire clus-
ters, cluster 4 dominated by agricultural fires had A-FRP peak
during November (Fig. 4(b)). Our earlier study on agricultural
residue fires in the cluster four region clearly suggest that fires
during winter (October–November) correspond to rice residue
burning events and fires during summer (March–May) to wheat
residue burning in that region [42]. These results on FRP over
different geographical regions can be useful to retrieve biomass
combustion rates in different ecosystems [47], [48], quantifying
trace gases, smoke and aerosol emissions [29], [50], [51] and
consequently for understanding the impact of vegetation fires
on air pollution and climate. In addition, information on the
FRP can also be used to infer biomass and bioenergy relation-
ships for addressing renewable energy questions.

IV. CONCLUSIONS

Spatial patterns in fire occurrences and intensity in India has
been analyzed using MODIS fire datasets. MODIS data was
quite useful in characterizing spatial patterns in fire occurrences
as well as some fire regime attributes. K-means clustering tech-
nique was useful in identifying hotspot regions of fire clusters.
Using the fire radiative power (FRP) data, we analyzed the fire
intensity in hotspot clusters using distribution fitting and cumu-
lative distribution function plots. We also tested two different
hypotheses, first, amongst different forest types, annual sum of
FRP (A-FRP) released from the closed broadleaved deciduous
forests will be much higher compared to the closed to open
broadleaved evergreen forests; second, due to the lower fuel
loads in agricultural systems compared to forests, the agricul-
tural residue fires will have lower A-FRP values than the forest
fires. Results suggested a variety of statistical distribution types

for the FRP data based on the type of vegetation burnt, the most
common being Burr distribution. Analysis from empirical cu-
mulative distribution plots suggested relatively high fire inten-
sity for closed broadleaved evergreen/semi-deciduous forests
than the other vegetation types. Contrary to our first hypothesis,
results suggested that A-FRP released from broadleaved ever-
green forests is much higher than the other vegetation types.
This is mainly attributed to anthropogenic nature of fires in
the region compared to meteorological factors. Relating to the
second hypothesis, A-FRP of the agricultural fires compared to
forests varied based on the vegetation type burnt and the total
number of fire counts. Agricultural fires were found to have sig-
nificantly higher A-FRP due to higher fire counts (large number
of fires) than the mosaic vegetation category and broadleaved
deciduous forests. In summary, results from this study highlight
spatial variations in fire intensities and geographical regions of
fire hotpots useful for addressing fire management issues and
pollution aspects in India.
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